// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/lite/core/kernel.h" #include "paddle/fluid/lite/core/op_registry.h" #include "paddle/fluid/operators/activation_op.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { template void Activate(const platform::CPUDeviceContext& context, const framework::LoDTensor* X, framework::LoDTensor* Out) { using T = typename Functor::ELEMENT_TYPE; auto* place = context.eigen_device(); auto x = framework::EigenVector::Flatten(paddle::operators::detail::Ref(X)); auto out = framework::EigenVector::Flatten(paddle::operators::detail::Ref(Out)); Functor()(*place, x, out); } template void ActivateGrad(const platform::CPUDeviceContext& context, const framework::LoDTensor* X, const framework::LoDTensor* Out, const framework::LoDTensor* Out_grad, framework::LoDTensor* X_grad) { using T = typename Functor::ELEMENT_TYPE; auto* place = context.eigen_device(); auto x = framework::EigenVector::Flatten(paddle::operators::detail::Ref(X)); auto out = framework::EigenVector::Flatten(paddle::operators::detail::Ref(Out)); auto x_grad = framework::EigenVector::Flatten( paddle::operators::detail::Ref(X_grad)); auto out_grad = framework::EigenVector::Flatten( paddle::operators::detail::Ref(Out_grad)); Functor()(*place, x, out, out_grad, x_grad); } template class SquareCompute : public KernelLite { public: using param_t = operators::ActivationParam; void Run() override { auto& context = context_->As(); auto& param = *param_.get_mutable(); CHECK(context.x86_device_context); param.Out->template mutable_data(); Activate>(*context.x86_device_context, ¶m.X->raw_tensor(), ¶m.Out->raw_tensor()); } // TargetType target() const override; // PrecisionType precision() const override; virtual ~SquareCompute() = default; }; template class SquareGradCompute : public KernelLite { public: using param_t = operators::ActivationGradParam; void Run() override { auto& context = context_->As(); auto& param = *param_.get_mutable(); CHECK(context.x86_device_context); param.X_grad->template mutable_data(); ActivateGrad>( *context.x86_device_context, ¶m.X->raw_tensor(), ¶m.Out->raw_tensor(), ¶m.Out_grad->raw_tensor(), ¶m.X_grad->raw_tensor()); } // TargetType target() const override; // PrecisionType precision() const override; virtual ~SquareGradCompute() = default; }; } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle // float REGISTER_LITE_KERNEL(square, kX86, kFloat, kNCHW, paddle::lite::kernels::x86::SquareCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kHost))}) .BindInput("W", {LiteType::GetTensorTy(TARGET(kHost))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))}) .Finalize(); REGISTER_LITE_KERNEL(square_grad, kX86, kFloat, kNCHW, paddle::lite::kernels::x86::SquareGradCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kHost))}) .BindInput("W", {LiteType::GetTensorTy(TARGET(kHost))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))}) .Finalize();