# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """VGG16 benchmark in Fluid""" from __future__ import print_function import sys import time import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid import paddle.v2.fluid.core as core import paddle.v2.fluid.profiler as profiler import argparse import functools import os def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--batch_size', type=int, default=128, help="Batch size for training.") parser.add_argument( '--learning_rate', type=float, default=1e-3, help="Learning rate for training.") parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.") parser.add_argument( '--device', type=str, default='CPU', choices=['CPU', 'GPU'], help="The device type.") parser.add_argument('--device_id', type=int, default=0, help="The device id.") parser.add_argument( '--data_format', type=str, default='NCHW', choices=['NCHW', 'NHWC'], help='The data order, now only support NCHW.') parser.add_argument( '--data_set', type=str, default='cifar10', choices=['cifar10', 'flowers'], help='Optional dataset for benchmark.') parser.add_argument( '--local', type=str2bool, default=True, help='Whether to run as local mode.') args = parser.parse_args() def vgg16_bn_drop(input): def conv_block(input, num_filter, groups, dropouts): return fluid.nets.img_conv_group( input=input, pool_size=2, pool_stride=2, conv_num_filter=[num_filter] * groups, conv_filter_size=3, conv_act='relu', conv_with_batchnorm=True, conv_batchnorm_drop_rate=dropouts, pool_type='max') conv1 = conv_block(input, 64, 2, [0.3, 0]) conv2 = conv_block(conv1, 128, 2, [0.4, 0]) conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5) fc1 = fluid.layers.fc(input=drop, size=512, act=None) bn = fluid.layers.batch_norm(input=fc1, act='relu') drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5) fc2 = fluid.layers.fc(input=drop2, size=512, act=None) return fc2 def main(): if args.data_set == "cifar10": classdim = 10 if args.data_format == 'NCHW': data_shape = [3, 32, 32] else: data_shape = [32, 32, 3] else: classdim = 102 if args.data_format == 'NCHW': data_shape = [3, 224, 224] else: data_shape = [224, 224, 3] # Input data images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') # Train program net = vgg16_bn_drop(images) predict = fluid.layers.fc(input=net, size=classdim, act='softmax') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) # Evaluator accuracy = fluid.evaluator.Accuracy(input=predict, label=label) # inference program inference_program = fluid.default_main_program().clone() with fluid.program_guard(inference_program): test_target = accuracy.metrics + accuracy.states inference_program = fluid.io.get_inference_program(test_target) # Optimization optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate) optimize_ops, params_grads = optimizer.minimize(avg_cost) # Initialize executor place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace( args.device_id) exe = fluid.Executor(place) # test def test(exe): accuracy.reset(exe) for batch_id, data in enumerate(test_reader()): img_data = np.array(map(lambda x: x[0].reshape(data_shape), data)).astype("float32") y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = y_data.reshape([-1, 1]) exe.run(inference_program, feed={"pixel": img_data, "label": y_data}) return accuracy.eval(exe) def train_loop(exe, trainer_prog): iters = 0 ts = time.time() for pass_id in range(args.num_passes): # train start_time = time.time() num_samples = 0 accuracy.reset(exe) with profiler.profiler("CPU", 'total') as prof: for batch_id, data in enumerate(train_reader()): ts = time.time() img_data = np.array( map(lambda x: x[0].reshape(data_shape), data)).astype( "float32") y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = y_data.reshape([-1, 1]) loss, acc = exe.run( trainer_prog, feed={"pixel": img_data, "label": y_data}, fetch_list=[avg_cost] + accuracy.metrics) iters += 1 num_samples += len(data) print( "Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, spent %f" % (pass_id, iters, loss, acc, time.time() - ts) ) # The accuracy is the accumulation of batches, but not the current batch. pass_elapsed = time.time() - start_time pass_train_acc = accuracy.eval(exe) pass_test_acc = test(exe) print( "Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f\n" % (pass_id, num_samples / pass_elapsed, pass_train_acc, pass_test_acc)) if args.local: # Parameter initialization exe.run(fluid.default_startup_program()) # data reader train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.cifar.train10() if args.data_set == 'cifar10' else paddle.dataset.flowers.train(), buf_size=5120), batch_size=args.batch_size) test_reader = paddle.batch( paddle.dataset.cifar.test10() if args.data_set == 'cifar10' else paddle.dataset.flowers.test(), batch_size=args.batch_size) train_loop(exe, fluid.default_main_program()) else: pserver_ips = os.getenv("PADDLE_INIT_PSERVERS") # all pserver endpoints eplist = [] for ip in pserver_ips.split(","): eplist.append(':'.join([ip, "6174"])) pserver_endpoints = ",".join(eplist) print("pserver endpoints: ", pserver_endpoints) trainers = int(os.getenv("TRAINERS")) # total trainer count print("trainers total: ", trainers) current_endpoint = os.getenv( "POD_IP") + ":6174" # current pserver endpoint training_role = os.getenv( "TRAINING_ROLE", "TRAINER") # get the training role: trainer/pserver t = fluid.DistributeTranspiler() t.transpile( optimize_ops, params_grads, pservers=pserver_endpoints, trainers=trainers) if training_role == "PSERVER": if not current_endpoint: print("need env SERVER_ENDPOINT") exit(1) pserver_prog = t.get_pserver_program(current_endpoint) pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) print("starting server side startup") exe.run(pserver_startup) print("starting parameter server...") exe.run(pserver_prog) elif training_role == "TRAINER": # Parameter initialization exe.run(fluid.default_startup_program()) # data reader train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.cifar.train10() if args.data_set == 'cifar10' else paddle.dataset.flowers.train(), buf_size=5120), batch_size=args.batch_size) test_reader = paddle.batch( paddle.dataset.cifar.test10() if args.data_set == 'cifar10' else paddle.dataset.flowers.test(), batch_size=args.batch_size) trainer_prog = t.get_trainer_program() feeder = fluid.DataFeeder(feed_list=[images, label], place=place) # TODO(typhoonzero): change trainer startup program to fetch parameters from pserver exe.run(fluid.default_startup_program()) train_loop(exe, trainer_prog) else: print("environment var TRAINER_ROLE should be TRAINER os PSERVER") def print_arguments(): print('----------- Configuration Arguments -----------') for arg, value in sorted(vars(args).iteritems()): print('%s: %s' % (arg, value)) print('------------------------------------------------') if __name__ == "__main__": print_arguments() main()