[English](PPVehicle_QUICK_STARTED_en.md) | 简体中文 # PP-Vehicle快速开始 ## 目录 - [环境准备](#环境准备) - [模型下载](#模型下载) - [配置文件说明](#配置文件说明) - [预测部署](#预测部署) - [在线视频流](#在线视频流) - [Jetson部署说明](#Jetson部署说明) - [参数说明](#参数说明) - [方案介绍](#方案介绍) - [车辆检测](#车辆检测) - [车辆跟踪](#车辆跟踪) - [车牌识别](#车牌识别) - [属性识别](#属性识别) - [违章停车识别](#违章停车识别) ## 环境准备 环境要求: PaddleDetection版本 >= release/2.5 或 develop版本 PaddlePaddle和PaddleDetection安装 ``` # PaddlePaddle CUDA10.1 python -m pip install paddlepaddle-gpu==2.2.2.post101 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html # PaddlePaddle CPU python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple # 克隆PaddleDetection仓库 cd git clone https://github.com/PaddlePaddle/PaddleDetection.git # 安装其他依赖 cd PaddleDetection pip install -r requirements.txt ``` 1. 详细安装文档参考[文档](../../../../docs/tutorials/INSTALL_cn.md) 2. 如果需要TensorRT推理加速(测速方式),请安装带`TensorRT版本Paddle`。您可以从[Paddle安装包](https://paddleinference.paddlepaddle.org.cn/v2.2/user_guides/download_lib.html#python)下载安装,或者按照[指导文档](https://www.paddlepaddle.org.cn/inference/master/optimize/paddle_trt.html)使用docker或自编译方式准备Paddle环境。 ## 模型下载 PP-Vehicle提供了目标检测、属性识别、行为识别、ReID预训练模型,以实现不同使用场景,用户可以直接下载使用 | 任务 | 端到端速度(ms)| 模型方案 | 模型体积 | | :---------: | :-------: | :------: |:------: | | 车辆检测(高精度) | 25.7ms | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | 182M | | 车辆检测(轻量级) | 13.2ms | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_ppvehicle.zip) | 27M | | 车辆检测(超轻量级) | 10ms(Jetson AGX) | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/ppvehicle/ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle.tar.gz) | 17M | | 车辆跟踪(高精度) | 40ms | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | 182M | | 车辆跟踪(轻量级) | 25ms | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_ppvehicle.zip) | 27M | | 车辆跟踪(超轻量级) | 13.2ms(Jetson AGX) | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/ppvehicle/ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle.tar.gz) | 17M | | 车牌识别 | 4.68ms | [车牌检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_det_infer.tar.gz)
[车牌字符识别](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_rec_infer.tar.gz) | 车牌检测:3.9M
车牌字符识别: 12M | | 车辆属性 | 7.31ms | [车辆属性](https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip) | 7.2M | | 车道线检测 | 47ms | [车道线模型](https://bj.bcebos.com/v1/paddledet/models/pipeline/pp_lite_stdc2_bdd100k.zip) | 47M | 下载模型后,解压至`./output_inference`文件夹。 在配置文件中,模型路径默认为模型的下载路径,如果用户不修改,则在推理时会自动下载对应的模型。 **注意:** - 检测跟踪模型精度为公开数据集BDD100K-MOT和UA-DETRAC整合后的联合数据集PPVehicle的结果,具体参照[ppvehicle](../../../../configs/ppvehicle) - 预测速度为T4下,开启TensorRT FP16的效果, 模型预测速度包含数据预处理、模型预测、后处理全流程 ## 配置文件说明 PP-Vehicle相关配置位于```deploy/pipeline/config/infer_cfg_ppvehicle.yml```中,存放模型路径,完成不同功能需要设置不同的任务类型 功能及任务类型对应表单如下: | 输入类型 | 功能 | 任务类型 | 配置项 | |-------|-------|----------|-----| | 图片 | 属性识别 | 目标检测 属性识别 | DET ATTR | | 单镜头视频 | 属性识别 | 多目标跟踪 属性识别 | MOT ATTR | | 单镜头视频 | 车牌识别 | 多目标跟踪 车牌识别 | MOT VEHICLEPLATE | 例如基于视频输入的属性识别,任务类型包含多目标跟踪和属性识别,具体配置如下: ``` crop_thresh: 0.5 visual: True warmup_frame: 50 MOT: model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip tracker_config: deploy/pipeline/config/tracker_config.yml batch_size: 1 enable: True VEHICLE_ATTR: model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip batch_size: 8 color_threshold: 0.5 type_threshold: 0.5 enable: True ``` **注意:** - 如果用户需要实现不同任务,可以在配置文件对应enable选项设置为True。 - 如果用户仅需要修改模型文件路径,可以在命令行中--config后面紧跟着 `-o MOT.model_dir=ppyoloe/` 进行修改即可,也可以手动修改配置文件中的相应模型路径,详细说明参考下方参数说明文档。 ## 预测部署 1. 直接使用默认配置或者examples中配置文件,或者直接在`infer_cfg_ppvehicle.yml`中修改配置: ``` # 例:车辆检测,指定配置文件路径和测试图片 python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml --image_file=test_image.jpg --device=gpu # 例:车辆车牌识别,指定配置文件路径和测试视频 python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_vehicle_plate.yml --video_file=test_video.mp4 --device=gpu ``` 2. 使用命令行进行功能开启,或者模型路径修改: ``` # 例:车辆跟踪,指定配置文件路径和测试视频,命令行中开启MOT模型并修改模型路径,命令行中指定的模型路径优先级高于配置文件 python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml -o MOT.enable=True MOT.model_dir=ppyoloe_infer/ --video_file=test_video.mp4 --device=gpu # 例:车辆违章分析,指定配置文件和测试视频,命令行中指定违停区域设置、违停时间判断。 python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_illegal_parking.yml \ --video_file=../car_test.mov \ --device=gpu \ --draw_center_traj \ --illegal_parking_time=3 \ --region_type=custom \ --region_polygon 600 300 1300 300 1300 800 600 800 ``` ### 在线视频流 在线视频流解码功能基于opencv的capture函数,支持rtsp、rtmp格式。 - rtsp拉流预测 对rtsp拉流的支持,使用--rtsp RTSP [RTSP ...]参数指定一路或者多路rtsp视频流,如果是多路地址中间用空格隔开。(或者video_file后面的视频地址直接更换为rtsp流地址),示例如下: ``` # 例:车辆属性识别,单路视频流 python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_vehicle_attr.yml -o visual=False --rtsp rtsp://[YOUR_RTSP_SITE] --device=gpu # 例:车辆属性识别,多路视频流 python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_vehicle_attr.yml -o visual=False --rtsp rtsp://[YOUR_RTSP_SITE1] rtsp://[YOUR_RTSP_SITE2] --device=gpu ``` - 视频结果推流rtsp 预测结果进行rtsp推流,使用--pushurl rtsp:[IP] 推流到IP地址端,PC端可以使用[VLC播放器](https://vlc.onl/)打开网络流进行播放,播放地址为 `rtsp:[IP]/videoname`。其中`videoname`是预测的视频文件名,如果视频来源是本地摄像头则`videoname`默认为`output`. ``` # 例:车辆属性识别,单路视频流,该示例播放地址为 rtsp://[YOUR_SERVER_IP]:8554/test_video python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_vehicle_attr.yml -o visual=False --video_file=test_video.mp4 --device=gpu --pushurl rtsp://[YOUR_SERVER_IP]:8554 ``` 注: 1. rtsp推流服务基于 [rtsp-simple-server](https://github.com/aler9/rtsp-simple-server), 如使用推流功能请先开启该服务. 使用方法很简单,以linux平台为例:1)下载对应平台release包;2)解压后在命令行执行命令 `./rtsp-simple-server`即可,成功后进入服务开启状态就可以接收视频流了。 2. rtsp推流如果模型处理速度跟不上会出现很明显的卡顿现象,建议跟踪模型使用ppyoloe_s版本,即修改配置中跟踪模型mot_ppyoloe_l_36e_pipeline.zip替换为mot_ppyoloe_s_36e_pipeline.zip。 ### Jetson部署说明 由于Jetson平台算力相比服务器有较大差距,有如下使用建议: 1. 模型选择轻量级版本,我们最新提供了轻量级[PP-YOLOE-Plus Tiny模型](../../../../configs/ppvehicle/README.md),该模型在Jetson AGX上可以实现4路视频流20fps实时跟踪。 2. 如果需进一步提升速度,建议开启跟踪跳帧功能,推荐使用2或者3: `skip_frame_num: 3`,该功能当前默认关闭。 上述修改可以直接修改配置文件(推荐),也可以在命令行中修改(字段较长,不推荐)。 PP-YOLOE-Plus Tiny模型在AGX平台不同功能开启时的速度如下:(测试视频跟踪车辆为1个) | 功能 | 平均每帧耗时(ms) | 运行帧率(fps) | |:----------|:----------|:----------| | 跟踪 | 13 | 77 | | 属性识别 | 20.2 | 49.4 | | 车牌识别 | - | - | ### 参数说明 | 参数 | 是否必须|含义 | |-------|-------|----------| | --config | Yes | 配置文件路径 | | -o | Option | 覆盖配置文件中对应的配置 | | --image_file | Option | 需要预测的图片 | | --image_dir | Option | 要预测的图片文件夹路径 | | --video_file | Option | 需要预测的视频,或者rtsp流地址 | | --rtsp | Option | rtsp视频流地址,支持一路或者多路同时输入 | | --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测,可设置为:0 - (摄像头数目-1) ),预测过程中在可视化界面按`q`退出输出预测结果到:output/output.mp4| | --device | Option | 运行时的设备,可选择`CPU/GPU/XPU`,默认为`CPU`| | --pushurl | Option| 对预测结果视频进行推流的地址,以rtsp://开头,该选项优先级高于视频结果本地存储,打开时不再另外存储本地预测结果视频, 默认为空,表示没有开启| | --output_dir | Option|可视化结果保存的根目录,默认为output/| | --run_mode | Option |使用GPU时,默认为paddle, 可选(paddle/trt_fp32/trt_fp16/trt_int8)| | --enable_mkldnn | Option | CPU预测中是否开启MKLDNN加速,默认为False | | --cpu_threads | Option| 设置cpu线程数,默认为1 | | --trt_calib_mode | Option| TensorRT是否使用校准功能,默认为False。使用TensorRT的int8功能时,需设置为True,使用PaddleSlim量化后的模型时需要设置为False | | --do_entrance_counting | Option | 是否统计出入口流量,默认为False | | --draw_center_traj | Option | 是否绘制跟踪轨迹,默认为False | | --region_type | Option | 'horizontal'(默认值)、'vertical':表示流量统计方向选择;'custom':表示设置车辆禁停区域 | | --region_polygon | Option | 设置禁停区域多边形多点的坐标,无默认值 | | --illegal_parking_time | Option | 设置禁停时间阈值,单位秒(s),-1(默认值)表示不做检查 | ## 方案介绍 PP-Vehicle 整体方案如下图所示:
### 车辆检测 - 采用PP-YOLOE L 作为目标检测模型 - 详细文档参考[PP-YOLOE](../../../../configs/ppyoloe/)和[检测跟踪文档](ppvehicle_mot.md) ### 车辆跟踪 - 采用SDE方案完成车辆跟踪 - 检测模型使用PP-YOLOE L(高精度)和S(轻量级) - 跟踪模块采用OC-SORT方案 - 详细文档参考[OC-SORT](../../../../configs/mot/ocsort)和[检测跟踪文档](ppvehicle_mot.md) ### 属性识别 - 使用PaddleClas提供的特色模型PP-LCNet,实现对车辆颜色及车型属性的识别。 - 详细文档参考[属性识别](ppvehicle_attribute.md) ### 车牌识别 - 使用PaddleOCR特色模型ch_PP-OCRv3_det+ch_PP-OCRv3_rec模型,识别车牌号码 - 详细文档参考[车牌识别](ppvehicle_plate.md) ### 违章停车识别 - 车辆跟踪模型使用高精度模型PP-YOLOE L,根据车辆的跟踪轨迹以及指定的违停区域判断是否违章停车,如果存在则展示违章停车车牌号。 - 详细文档参考[违章停车识别](ppvehicle_illegal_parking.md) ### 违法分析-逆行 - 违法分析-逆行,通过使用高精度分割模型PP-Seg,对车道线进行分割拟合,然后与车辆轨迹组合判断车辆行驶方向是否与道路方向一致。 - 详细文档参考[违法分析-逆行](ppvehicle_retrograde.md) ### 违法分析-压线 - 违法分析-逆行,通过使用高精度分割模型PP-Seg,对车道线进行分割拟合,然后与车辆区域是否覆盖实线区域,进行压线判断。 - 详细文档参考[违法分析-压线](ppvehicle_press.md)