# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle.v2 as paddle import paddle.fluid as fluid import paddle.fluid.core as core import paddle.fluid.framework as framework import paddle.fluid.layers as layers from paddle.fluid.executor import Executor import os dict_size = 30000 source_dict_dim = target_dict_dim = dict_size src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size) hidden_dim = 32 word_dim = 16 IS_SPARSE = True batch_size = 10 max_length = 50 topk_size = 50 trg_dic_size = 10000 decoder_size = hidden_dim def encoder_decoder(): # encoder src_word_id = layers.data( name="src_word_id", shape=[1], dtype='int64', lod_level=1) src_embedding = layers.embedding( input=src_word_id, size=[dict_size, word_dim], dtype='float32', is_sparse=IS_SPARSE, param_attr=fluid.ParamAttr(name='vemb')) fc1 = fluid.layers.fc(input=src_embedding, size=hidden_dim * 4, act='tanh') lstm_hidden0, lstm_0 = layers.dynamic_lstm(input=fc1, size=hidden_dim * 4) encoder_out = layers.sequence_last_step(input=lstm_hidden0) # decoder trg_language_word = layers.data( name="target_language_word", shape=[1], dtype='int64', lod_level=1) trg_embedding = layers.embedding( input=trg_language_word, size=[dict_size, word_dim], dtype='float32', is_sparse=IS_SPARSE, param_attr=fluid.ParamAttr(name='vemb')) rnn = fluid.layers.DynamicRNN() with rnn.block(): current_word = rnn.step_input(trg_embedding) mem = rnn.memory(init=encoder_out) fc1 = fluid.layers.fc(input=[current_word, mem], size=decoder_size, act='tanh') out = fluid.layers.fc(input=fc1, size=target_dict_dim, act='softmax') rnn.update_memory(mem, fc1) rnn.output(out) return rnn() def to_lodtensor(data, place): seq_lens = [len(seq) for seq in data] cur_len = 0 lod = [cur_len] for l in seq_lens: cur_len += l lod.append(cur_len) flattened_data = np.concatenate(data, axis=0).astype("int64") flattened_data = flattened_data.reshape([len(flattened_data), 1]) res = core.LoDTensor() res.set(flattened_data, place) res.set_lod([lod]) return res def main(): rnn_out = encoder_decoder() label = layers.data( name="target_language_next_word", shape=[1], dtype='int64', lod_level=1) cost = layers.cross_entropy(input=rnn_out, label=label) avg_cost = fluid.layers.mean(cost) optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4) optimize_ops, params_grads = optimizer.minimize(avg_cost) train_data = paddle.batch( paddle.reader.shuffle( paddle.dataset.wmt14.train(dict_size), buf_size=1000), batch_size=batch_size) place = core.CPUPlace() exe = Executor(place) t = fluid.DistributeTranspiler() # all parameter server endpoints list for spliting parameters pserver_endpoints = os.getenv("PSERVERS") # server endpoint for current node current_endpoint = os.getenv("SERVER_ENDPOINT") # run as trainer or parameter server training_role = os.getenv( "TRAINING_ROLE", "TRAINER") # get the training role: trainer/pserver t.transpile( optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2) if training_role == "PSERVER": if not current_endpoint: print("need env SERVER_ENDPOINT") exit(1) pserver_prog = t.get_pserver_program(current_endpoint) pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) exe.run(pserver_startup) exe.run(pserver_prog) elif training_role == "TRAINER": trainer_prog = t.get_trainer_program() exe.run(framework.default_startup_program()) batch_id = 0 for pass_id in xrange(2): for data in train_data(): word_data = to_lodtensor(map(lambda x: x[0], data), place) trg_word = to_lodtensor(map(lambda x: x[1], data), place) trg_word_next = to_lodtensor(map(lambda x: x[2], data), place) outs = exe.run(trainer_prog, feed={ 'src_word_id': word_data, 'target_language_word': trg_word, 'target_language_next_word': trg_word_next }, fetch_list=[avg_cost]) avg_cost_val = np.array(outs[0]) print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) + " avg_cost=" + str(avg_cost_val)) if batch_id > 3: exit(0) batch_id += 1 else: print("environment var TRAINER_ROLE should be TRAINER os PSERVER") if __name__ == '__main__': main()