architecture: YOLOv5 use_gpu: true max_iters: 85000 log_smooth_window: 1 save_dir: output snapshot_iter: 5000 metric: COCO pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar weights: output/yolov3_r50vd_dcn_db_iouaware_obj365_pretrained_coco/model_final use_fine_grained_loss: false num_classes: 80 YOLOv5: backbone: CSPYolo yolo_head: YOLOv5Head use_fine_grained_loss: false CSPYolo: depth_multiple: 1.33 width_multiple: 1.25 act: 'hard_swish' weight_prefix_name: 'model' YOLOv5Head: anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]] anchor_masks: [[0, 1, 2], [3, 4, 5], [6, 7, 8]] yolo_loss: YOLOv3Loss stride: [8, 16, 32] nms: background_label: -1 keep_top_k: 300 nms_threshold: 0.65 #0.45 nms_top_k: -1 normalized: false score_threshold: 0.001 #0.001 weight_prefix_name: 'model' YOLOv3Loss: batch_size: 4 ignore_thresh: 0.7 label_smooth: false use_fine_grained_loss: false LearningRate: base_lr: 0.001 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: - 55000 - 75000 - !LinearWarmup start_factor: 0. steps: 4000 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0005 type: L2 _READER_: 'yolov5_reader.yml'