architecture: YOLOv5 use_gpu: true max_iters: 85000 log_smooth_window: 1 save_dir: output snapshot_iter: 5000 metric: COCO pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar weights: output/yolov3_r50vd_dcn_db_iouaware_obj365_pretrained_coco/model_final use_fine_grained_loss: false num_classes: 80 YOLOv5: backbone: CSPYolo yolo_head: YOLOv5Head use_fine_grained_loss: false CSPYolo: depth_multiple: 1.33 width_multiple: 1.25 act: 'mish' yolov5: false save: [22, 26, 30] weight_prefix_name: 'model' layers: [ [-1, 1, 'Conv', [32, 3, 1]], # 0 [-1, 1, 'Conv', [64, 3, 2]], # 1-P1/2 [-1, 1, 'Bottleneck', [64]], [-1, 1, 'Conv', [128, 3, 2]], # 3-P2/4 [-1, 2, 'BottleneckCSP', [128]], [-1, 1, 'Conv', [256, 3, 2]], # 5-P3/8 [-1, 8, 'BottleneckCSP', [256]], [-1, 1, 'Conv', [512, 3, 2]], # 7-P4/16 [-1, 8, 'BottleneckCSP', [512]], [-1, 1, 'Conv', [1024, 3, 2]], # 9-P5/32 [-1, 4, 'BottleneckCSP', [1024]], # 10 ] neck: [ [-1, 1, 'SPPCSP', [512]], # 11 [-1, 1, 'Conv', [256, 1, 1]], [-1, 1, 'Upsample', ['None', 2, 'nearest']], [8, 1, 'Conv', [256, 1, 1]], # route backbone P4 [[-1, -2], 1, 'Concat', [1]], [-1, 2, 'BottleneckCSP2', [256]], # 16 [-1, 1, 'Conv', [128, 1, 1]], [-1, 1, 'Upsample', ['None', 2, 'nearest']], [6, 1, 'Conv', [128, 1, 1]], # route backbone P3 [[-1, -2], 1, 'Concat', [1]], [-1, 2, 'BottleneckCSP2', [128]], # 21 [-1, 1, 'Conv', [256, 3, 1]], [-2, 1, 'Conv', [256, 3, 2]], [[-1, 16], 1, 'Concat', [1]], # cat [-1, 2, 'BottleneckCSP2', [256]], # 25 [-1, 1, 'Conv', [512, 3, 1]], [-2, 1, 'Conv', [512, 3, 2]], [[-1, 11], 1, 'Concat', [1]], # cat [-1, 2, 'BottleneckCSP2', [512]], # 29 [-1, 1, 'Conv', [1024, 3, 1]] ] YOLOv5Head: anchors: [[12, 16], [19, 36], [40, 28], [36, 75], [76, 55], [72, 146], [142, 110], [192, 243], [459, 401]] anchor_masks: [[0, 1, 2], [3, 4, 5], [6, 7, 8]] yolo_loss: YOLOv3Loss stride: [8, 16, 32] start: 31 nms: background_label: -1 keep_top_k: 300 nms_threshold: 0.65 #0.45 nms_top_k: -1 normalized: false score_threshold: 0.001 #0.001 weight_prefix_name: 'model' YOLOv3Loss: batch_size: 4 ignore_thresh: 0.7 label_smooth: false use_fine_grained_loss: false LearningRate: base_lr: 0.001 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: - 55000 - 75000 - !LinearWarmup start_factor: 0. steps: 4000 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0005 type: L2 _READER_: 'yolov5_reader.yml'