// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/details/multi_devices_graph_builder.h" #include "paddle/fluid/framework/details/computation_op_handle.h" #include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h" #include "paddle/fluid/framework/scope.h" #ifdef PADDLE_WITH_CUDA #include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h" #endif #include #include namespace paddle { namespace framework { namespace details { #ifdef PADDLE_WITH_CUDA MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder( const std::vector &places, const std::string &loss_var_name, const std::unordered_set ¶ms, const std::vector &local_scopes, platform::NCCLContextMap *nccl_ctxs) : loss_var_name_(loss_var_name), places_(places), local_scopes_(local_scopes), nccl_ctxs_(nccl_ctxs) { #else MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder( const std::vector &places, const std::string &loss_var_name, const std::unordered_set ¶ms, const std::vector &local_scopes) : loss_var_name_(loss_var_name), places_(places), local_scopes_(local_scopes) { #endif for (auto &p : params) { grad_names_.insert(GradVarName(p)); } } std::unique_ptr MultiDevSSAGraphBuilder::Build( const ProgramDesc &program) const { auto graph = new SSAGraph(); SSAGraph &result = *graph; std::unordered_set og_has_been_broadcast; result.vars_.resize(places_.size()); bool is_forwarding = true; for (auto *op : program.Block(0).AllOps()) { bool change_forward = false; if (!is_forwarding) { // FIXME(yy): Do not hard code like this if (op->OutputArgumentNames().size() == 1 && op->OutputArgumentNames()[0] == GradVarName(loss_var_name_)) { continue; // Drop fill 1. for backward coeff; } } for (size_t i = 0; i < places_.size(); ++i) { auto &p = places_[i]; auto *s = local_scopes_[i]; result.ops_.emplace_back(new ComputationOpHandle(*op, s, p)); auto *op_handle = result.ops_.back().get(); op_handle->dev_ctxes_[p] = const_cast( platform::DeviceContextPool::Instance().Get(p)); auto var_names = op->InputArgumentNames(); for (auto &each_var_name : var_names) { VarHandle *var = CreateOrGetLatestVarHandle(&result, each_var_name, p, i); op_handle->AddInput(var); } var_names = op->OutputArgumentNames(); for (auto &each_var_name : var_names) { CreateOpOutput(&result, op_handle, each_var_name, p, i); } if (is_forwarding) { if (var_names.size() == 1 && var_names[0] == loss_var_name_) { // Insert ScaleCost OpHandle #ifdef PADDLE_WITH_CUDA auto *communication_dev_ctx = nccl_ctxs_->DevCtx(p); #else auto *communication_dev_ctx = platform::DeviceContextPool::Instance().Get(platform::CPUPlace()); #endif op_handle = new ScaleLossGradOpHandle(local_scopes_.size(), s, p, communication_dev_ctx); result.ops_.emplace_back(op_handle); // FIXME: Currently ScaleLossGradOp only use device_count as scale // factor. So it does not depend on any other operators. // VarHandle *loss = GetVarHandle(loss_var_name, place); // loss->pending_ops_.emplace_back(op_handle); // op_handle->inputs_.emplace_back(loss); CreateOpOutput(&result, op_handle, GradVarName(loss_var_name_), p, i); change_forward = true; } } } if (change_forward) { is_forwarding = false; } if (!is_forwarding) { auto var_names = op->OutputArgumentNames(); // Currently, we assume that once gradient is generated, it can be // broadcast, and each gradient is only broadcast once. But there are no // other cases, for example, we need to adjust the gradient according to // the input when we get the gradient, which is not considered at present. for (auto &og : var_names) { if (grad_names_.count(og) != 0 && og_has_been_broadcast.count(og) == 0) { // is param grad // Insert NCCL AllReduce Op og_has_been_broadcast.insert(og); #ifdef PADDLE_WITH_CUDA result.ops_.emplace_back( new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_)); auto *op_handle = result.ops_.back().get(); for (size_t i = 0; i < places_.size(); ++i) { auto &p = places_[i]; auto &vars = result.vars_[i][og]; if (vars.empty()) { // This device has no data. continue. continue; } auto *prev_grad = &vars[vars.size() - 1]; op_handle->AddInput(prev_grad); auto &var = vars[vars.size()]; var.place_ = p; var.name_ = og; var.version_ = vars.size() - 1; op_handle->AddOutput(&var); } #else PADDLE_ENFORCE("Not implemented"); #endif } } } } /* Dependency graph has been constructed. However, there are still data harzaeds need to be handled. */ PolishGraphToSupportDataHazards(&result); /* * Only variables should be the leaves of graph. */ AddOutputToLeafOps(&result); if (VLOG_IS_ON(10)) { std::ostringstream sout; PrintGraphviz(*graph, sout); VLOG(10) << sout.str(); } return std::unique_ptr(graph); } // namespace details } // namespace details } // namespace framework } // namespace paddle