// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/layer.h" #include #include #include #include #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/string/printf.h" namespace paddle { namespace imperative { std::map py_funcs_; using framework::Variable; void AddTo(Variable* src, Variable* dst) { framework::LoDTensor* dst_tensor = dst->GetMutable(); framework::LoDTensor* src_tensor = src->GetMutable(); // FIXME(minqiyang): loss_grad op will pass a zero grad of label // ugly fix for it if (src_tensor->numel() == 0) { return; } PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(), "dst_numel %lld vs. src_numel %lld", dst_tensor->numel(), src_tensor->numel()); float* dst_data = dst_tensor->mutable_data(platform::CPUPlace()); const float* src_data = src_tensor->data(); for (size_t i = 0; i < src_tensor->numel(); ++i) { dst_data[i] += src_data[i]; } } class Autograd { public: Autograd() {} void RunBackward(VarBase* var) { if (var->stop_gradient_) { return; } std::deque ready; ready.push_back(var->pre_op_); std::map dep_counts = ComputeDepCounts(var->pre_op_); while (!ready.empty()) { OpBase* ready_op = ready.front(); ready.pop_front(); std::map> input_grads = ready_op->ApplyGrad(); for (auto it : input_grads) { const std::vector& ingrads = it.second; for (size_t i = 0; i < ingrads.size(); ++i) { if (!ingrads[i]) continue; if (ready_op->input_vars_[it.first][i]->stop_gradient_) { continue; } OpBase* pre_op = ready_op->pre_ops_[it.first][i]; if (!pre_op) continue; dep_counts[pre_op] -= 1; PADDLE_ENFORCE(dep_counts[pre_op] >= 0); bool pre_op_ready = dep_counts[pre_op] == 0; if (pre_op_ready) { ready.push_back(pre_op); } } } } } private: std::map ComputeDepCounts(OpBase* op) { std::map ret; std::deque queue; queue.push_back(op); std::unordered_set visited; visited.insert(op); while (!queue.empty()) { OpBase* candidate = queue.front(); queue.pop_front(); for (auto it : candidate->pre_ops_) { for (OpBase* pre_op : it.second) { if (!pre_op) continue; if (visited.find(pre_op) == visited.end()) { visited.insert(pre_op); queue.push_back(pre_op); } ret[pre_op] += 1; } } } return ret; } }; framework::LoDTensor& VarBase::Grad() { VLOG(3) << "get var grad " << var_desc_->Name(); return *grads_->GetMutable(); } std::map> OpBase::ApplyGrad() { if (!grad_op_desc_) { LOG(WARNING) << "op with no grad: " << op_desc_->Type(); return {}; } VLOG(3) << "op grad " << grad_op_desc_->Type(); std::vector> tmp_vars; std::map> grad_outputs; for (auto it : grad_output_vars_) { auto& outputs = grad_outputs[it.first]; for (size_t i = 0; i < it.second.size(); ++i) { // Allocate a new variable Variable* tmp_var = new framework::Variable(); tmp_var->GetMutable(); tmp_vars.emplace_back(tmp_var); outputs.push_back(tmp_var); } } framework::RuntimeContext ctx(grad_input_vars_, grad_outputs); // No need to do compile time infer shape here. // grad_op_desc_->InferShape(*block_); grad_op_desc_->InferVarType(block_); std::unique_ptr opbase = framework::OpRegistry::CreateOp(*grad_op_desc_); framework::OperatorWithKernel* op_kernel = dynamic_cast(opbase.get()); PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel"); framework::Scope scope; platform::CPUPlace place; PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place); p.op.RuntimeInferShape(scope, place, ctx); p.func(framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx)); for (auto it : grad_output_vars_) { auto& outputs = grad_outputs[it.first]; auto& origin_outputs = it.second; for (size_t i = 0; i < outputs.size(); ++i) { framework::Variable* orig_grad = origin_outputs[i]; AddTo(outputs[i], orig_grad); } } return input_vars_; } void VarBase::RunBackward() { if (!pre_op_) return; auto grads_t = grads_->GetMutable(); float* data = grads_t->mutable_data(platform::CPUPlace()); std::fill(data, data + grads_t->numel(), 1.0); PADDLE_ENFORCE( grads_ == pre_op_->output_vars_[pre_op_out_name_][pre_op_out_idx_]->grads_); Autograd().RunBackward(this); } void PyLayer::RegisterFunc(int func_id, const py::object& py_func) { py_funcs_[func_id] = py_func; } std::vector PyLayer::Apply(int func_id, const std::vector& inputs) { std::vector tensor_inputs; std::vector ret; for (const VarBase& in : inputs) { tensor_inputs.push_back(in.var_->Get()); } PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end()); CallPythonFunc(py_funcs_[func_id], tensor_inputs, &ret); return ret; } } // namespace imperative } // namespace paddle