## 安装、编译与链接C-API预测库
### 直接下载安装
从CI系统中下载最新的C-API开发包进行安装,用户可以从下面的表格中找到需要的版本:
### 从源码编译
用户也可以从 PaddlePaddle 核心代码编译C-API链接库,只需在编译时配制下面这些编译选项:
| 选项 | 值 | 
| WITH_C_API | ON | 
| WITH_PYTHON | OFF(推荐) | 
| WITH_SWIG_PY | OFF(推荐) | 
| WITH_GOLANG | OFF(推荐) | 
| WITH_GPU | ON/OFF | 
| WITH_MKL | ON/OFF | 
建议按照推荐值设置,以避免链接不必要的库。其它可选编译选项按需进行设定。
下面的代码片段从github拉取最新代码,配制编译选项(需要将PADDLE_ROOT替换为PaddlePaddle预测库的安装路径):
```shell
PADDLE_ROOT=/path/of/capi
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=$PADDLE_ROOT \
      -DCMAKE_BUILD_TYPE=Release \
      -DWITH_C_API=ON \
      -DWITH_SWIG_PY=OFF \
      -DWITH_GOLANG=OFF \
      -DWITH_PYTHON=OFF \
      -DWITH_MKL=OFF \
      -DWITH_GPU=OFF  \
      ..
```
执行上述代码生成Makefile文件后,执行:`make && make install`。成功编译后,使用C-API所需的依赖(包括:(1)编译出的PaddlePaddle预测库和头文件;(2)第三方链接库和头文件)均会存放于`PADDLE_ROOT`目录中。
编译成功后在 `PADDLE_ROOT` 下会看到如下目录结构(包括了编译出的PaddlePaddle头文件和链接库,以及第三方依赖链接库和头文件(如果需要,由链接方式决定)):
```text
├── include
│   └── paddle
│       ├── arguments.h
│       ├── capi.h
│       ├── capi_private.h
│       ├── config.h
│       ├── error.h
│       ├── gradient_machine.h
│       ├── main.h
│       ├── matrix.h
│       ├── paddle_capi.map
│       └── vector.h
├── lib
│   ├── libpaddle_capi_engine.a
│   ├── libpaddle_capi_layers.a
│   ├── libpaddle_capi_shared.so
│   └── libpaddle_capi_whole.a
└── third_party
    ├── gflags
    │   ├── include
    │   │   └── gflags
    │   │       ├── gflags_completions.h
    │   │       ├── gflags_declare.h
    │   │       ...
    │   └── lib
    │       └── libgflags.a
    ├── glog
    │   ├── include
    │   │   └── glog
    │   │       ├── config.h
    │   │       ...
    │   └── lib
    │       └── libglog.a
    ├── openblas
    │   ├── include
    │   │   ├── cblas.h
    │   │   ...
    │   └── lib
    │       ...
    ├── protobuf
    │   ├── include
    │   │   └── google
    │   │       └── protobuf
    │   │           ...
    │   └── lib
    │       └── libprotobuf-lite.a
    └── zlib
        ├── include
        │   ...
        └── lib
            ...
```
### 链接说明
目前提供三种链接方式:
1. 链接`libpaddle_capi_shared.so` 动态库(这种方式最为简便,链接相对容易,**在无特殊需求情况下,推荐使用此方式**),需注意:
    1. 如果编译时指定编译CPU版本,且使用`OpenBLAS`数学库,在使用C-API开发预测程序时,只需要链接`libpaddle_capi_shared.so`这一个库。
    1. 如果是用编译时指定CPU版本,且使用`MKL`数学库,由于`MKL`库有自己独立的动态库文件,在使用PaddlePaddle C-API开发预测程序时,需要自己链接MKL链接库。
    1. 如果编译时指定编译GPU版本,CUDA相关库会在预测程序运行时动态装载,需要将CUDA相关的库设置到`LD_LIBRARY_PATH`环境变量中。
2. 链接静态库 `libpaddle_capi_whole.a`,需注意:
    1. 需要指定`-Wl,--whole-archive`链接选项。
    1. 需要显式地链接 `gflags`、`glog`、`libz`、`protobuf` 等第三方库,可在`PADDLE_ROOT/third_party`下找到。
    1. 如果在编译 C-API 时使用OpenBLAS数学库,需要显示地链接`libopenblas.a`。
    1. 如果在编译 C-API 是使用MKL数学库,需要显示地链接MKL的动态库。
3. 链接静态库 `libpaddle_capi_layers.a`和`libpaddle_capi_engine.a`,需注意:
    1. 这种链接方式主要用于移动端预测。
    1. 为了减少生成链接库的大小把`libpaddle_capi_whole.a`拆成以上两个静态链接库。
    1. 需指定`-Wl,--whole-archive -lpaddle_capi_layers` 和 `-Wl,--no-whole-archive -lpaddle_capi_engine` 进行链接。
    1. 第三方依赖库需要按照与方式2同样方法显示地进行链接。