# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from .meta_arch import BaseArch from ppdet.core.workspace import register, create __all__ = ['DETR'] # Deformable DETR, DINO use the same architecture as DETR @register class DETR(BaseArch): __category__ = 'architecture' __inject__ = ['post_process'] __shared__ = ['exclude_post_process'] def __init__(self, backbone, transformer='DETRTransformer', detr_head='DETRHead', post_process='DETRBBoxPostProcess', exclude_post_process=False): super(DETR, self).__init__() self.backbone = backbone self.transformer = transformer self.detr_head = detr_head self.post_process = post_process self.exclude_post_process = exclude_post_process @classmethod def from_config(cls, cfg, *args, **kwargs): # backbone backbone = create(cfg['backbone']) # transformer kwargs = {'input_shape': backbone.out_shape} transformer = create(cfg['transformer'], **kwargs) # head kwargs = { 'hidden_dim': transformer.hidden_dim, 'nhead': transformer.nhead, 'input_shape': backbone.out_shape } detr_head = create(cfg['detr_head'], **kwargs) return { 'backbone': backbone, 'transformer': transformer, "detr_head": detr_head, } def _forward(self): # Backbone body_feats = self.backbone(self.inputs) # Transformer pad_mask = self.inputs.get('pad_mask', None) out_transformer = self.transformer(body_feats, pad_mask, self.inputs) # DETR Head if self.training: detr_losses = self.detr_head(out_transformer, body_feats, self.inputs) detr_losses.update({ 'loss': paddle.add_n( [v for k, v in detr_losses.items() if 'log' not in k]) }) return detr_losses else: preds = self.detr_head(out_transformer, body_feats) if self.exclude_post_process: bboxes, logits, masks = preds return bboxes, logits else: bbox, bbox_num = self.post_process( preds, self.inputs['im_shape'], self.inputs['scale_factor']) output = {'bbox': bbox, 'bbox_num': bbox_num} return output def get_loss(self): return self._forward() def get_pred(self): return self._forward()