// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/memory/allocation/legacy_allocator.h" #include #include #include #include #ifdef PADDLE_WITH_JEMALLOC #include #endif #include "glog/logging.h" #include "paddle/fluid/memory/detail/buddy_allocator.h" #include "paddle/fluid/memory/detail/system_allocator.h" #include "paddle/fluid/platform/gpu_info.h" #include "paddle/fluid/string/printf.h" #include "paddle/fluid/string/split.h" DEFINE_bool(init_allocated_mem, false, "It is a mistake that the values of the memory allocated by " "BuddyAllocator are always zeroed in some op's implementation. " "To find this error in time, we use init_allocated_mem to indicate " "that initializing the allocated memory with a small value " "during unit testing."); DECLARE_double(fraction_of_gpu_memory_to_use); DECLARE_bool(benchmark); namespace paddle { namespace memory { namespace legacy { template void *Alloc(const Place &place, size_t size); template void Free(const Place &place, void *p, size_t size); template size_t Used(const Place &place); struct Usage : public boost::static_visitor { size_t operator()(const platform::CPUPlace &cpu) const; size_t operator()(const platform::CUDAPlace &gpu) const; size_t operator()(const platform::CUDAPinnedPlace &cuda_pinned) const; }; size_t memory_usage(const platform::Place &p); using BuddyAllocator = detail::BuddyAllocator; BuddyAllocator *GetCPUBuddyAllocator() { // We tried thread_local for inference::RNN1 model, but that not works much // for multi-thread test. static std::once_flag init_flag; static detail::BuddyAllocator *a = nullptr; std::call_once(init_flag, []() { a = new detail::BuddyAllocator( std::unique_ptr(new detail::CPUAllocator), platform::CpuMinChunkSize(), platform::CpuMaxChunkSize()); }); return a; } // We compared the NaiveAllocator with BuddyAllocator in CPU memory allocation, // seems they are almost the same overhead. struct NaiveAllocator { void *Alloc(size_t size) { return malloc(size); } void Free(void *p) { PADDLE_ENFORCE(p); free(p); } static NaiveAllocator *Instance() { static NaiveAllocator x; return &x; } private: std::mutex lock_; }; template <> void *Alloc(const platform::CPUPlace &place, size_t size) { VLOG(10) << "Allocate " << size << " bytes on " << platform::Place(place); #ifdef PADDLE_WITH_JEMALLOC void *p = malloc(size); #else void *p = GetCPUBuddyAllocator()->Alloc(size); #endif if (FLAGS_init_allocated_mem) { memset(p, 0xEF, size); } VLOG(10) << " pointer=" << p; return p; } template <> void Free(const platform::CPUPlace &place, void *p, size_t size) { VLOG(10) << "Free pointer=" << p << " on " << platform::Place(place); #ifdef PADDLE_WITH_JEMALLOC free(p); #else GetCPUBuddyAllocator()->Free(p); #endif } template <> size_t Used(const platform::CPUPlace &place) { #ifdef PADDLE_WITH_JEMALLOC // fake the result of used memory when PADDLE_WITH_JEMALLOC is ON return 0U; #else return GetCPUBuddyAllocator()->Used(); #endif } #ifdef PADDLE_WITH_CUDA BuddyAllocator *GetGPUBuddyAllocator(int gpu_id) { static std::once_flag init_flag; static detail::BuddyAllocator **a_arr = nullptr; static std::vector devices; std::call_once(init_flag, [gpu_id]() { devices = platform::GetSelectedDevices(); int gpu_num = devices.size(); allocation::GPUMemMonitor.Initialize(devices.size()); a_arr = new BuddyAllocator *[gpu_num]; for (size_t i = 0; i < devices.size(); ++i) { int dev_id = devices[i]; a_arr[i] = nullptr; platform::SetDeviceId(dev_id); a_arr[i] = new BuddyAllocator(std::unique_ptr( new detail::GPUAllocator(dev_id)), platform::GpuMinChunkSize(), platform::GpuMaxChunkSize()); VLOG(10) << "\n\nNOTE: each GPU device use " << FLAGS_fraction_of_gpu_memory_to_use * 100 << "% of GPU memory.\n" << "You can set GFlags environment variable '" << "FLAGS_fraction_of_gpu_memory_to_use" << "' to change the fraction of GPU usage.\n\n"; } }); platform::SetDeviceId(gpu_id); auto pos = std::distance(devices.begin(), std::find(devices.begin(), devices.end(), gpu_id)); return a_arr[pos]; } #endif template <> size_t Used(const platform::CUDAPlace &place) { #ifdef PADDLE_WITH_CUDA return GetGPUBuddyAllocator(place.device)->Used(); #else PADDLE_THROW("'CUDAPlace' is not supported in CPU only device."); #endif } template <> void *Alloc(const platform::CUDAPlace &place, size_t size) { #ifdef PADDLE_WITH_CUDA auto *buddy_allocator = GetGPUBuddyAllocator(place.device); auto *ptr = buddy_allocator->Alloc(size); if (ptr == nullptr) { int cur_dev = platform::GetCurrentDeviceId(); platform::SetDeviceId(place.device); size_t avail, total; platform::GpuMemoryUsage(&avail, &total); LOG(FATAL) << "Cannot allocate " << string::HumanReadableSize(size) << " in GPU " << place.device << ", available " << string::HumanReadableSize(avail) << "total " << total << "GpuMinChunkSize " << string::HumanReadableSize(buddy_allocator->GetMinChunkSize()) << "GpuMaxChunkSize " << string::HumanReadableSize(buddy_allocator->GetMaxChunkSize()) << "GPU memory used: " << string::HumanReadableSize(Used(place)); platform::SetDeviceId(cur_dev); } else { if (FLAGS_benchmark) { allocation::GPUMemMonitor.Add(place.device, size); } if (FLAGS_init_allocated_mem) { cudaMemset(ptr, 0xEF, size); } } return ptr; #else PADDLE_THROW("'CUDAPlace' is not supported in CPU only device."); #endif } template <> void Free(const platform::CUDAPlace &place, void *p, size_t size) { #ifdef PADDLE_WITH_CUDA GetGPUBuddyAllocator(place.device)->Free(p); if (FLAGS_benchmark) { allocation::GPUMemMonitor.Minus(place.device, size); } #else PADDLE_THROW("'CUDAPlace' is not supported in CPU only device."); #endif } #ifdef PADDLE_WITH_CUDA BuddyAllocator *GetCUDAPinnedBuddyAllocator() { static std::once_flag init_flag; static BuddyAllocator *ba = nullptr; std::call_once(init_flag, []() { ba = new BuddyAllocator(std::unique_ptr( new detail::CUDAPinnedAllocator), platform::CUDAPinnedMinChunkSize(), platform::CUDAPinnedMaxChunkSize()); }); return ba; } #endif template <> size_t Used(const platform::CUDAPinnedPlace &place) { #ifdef PADDLE_WITH_CUDA return GetCUDAPinnedBuddyAllocator()->Used(); #else PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device."); #endif } template <> void *Alloc(const platform::CUDAPinnedPlace &place, size_t size) { #ifdef PADDLE_WITH_CUDA auto *buddy_allocator = GetCUDAPinnedBuddyAllocator(); void *ptr = buddy_allocator->Alloc(size); if (ptr == nullptr) { LOG(WARNING) << "cudaHostAlloc Cannot allocate " << size << " bytes in CUDAPinnedPlace"; } if (FLAGS_init_allocated_mem) { memset(ptr, 0xEF, size); } return ptr; #else PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device."); #endif } template <> void Free(const platform::CUDAPinnedPlace &place, void *p, size_t size) { #ifdef PADDLE_WITH_CUDA GetCUDAPinnedBuddyAllocator()->Free(p); #else PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device."); #endif } struct AllocVisitor : public boost::static_visitor { inline explicit AllocVisitor(size_t size) : size_(size) {} template inline void *operator()(const Place &place) const { return Alloc(place, size_); } private: size_t size_; }; struct FreeVisitor : public boost::static_visitor { inline explicit FreeVisitor(void *ptr, size_t size) : ptr_(ptr), size_(size) {} template inline void operator()(const Place &place) const { Free(place, ptr_, size_); } private: void *ptr_; size_t size_; }; size_t Usage::operator()(const platform::CPUPlace &cpu) const { return Used(cpu); } size_t Usage::operator()(const platform::CUDAPlace &gpu) const { #ifdef PADDLE_WITH_CUDA return Used(gpu); #else PADDLE_THROW("'CUDAPlace' is not supported in CPU only device."); #endif } size_t Usage::operator()(const platform::CUDAPinnedPlace &cuda_pinned) const { #ifdef PADDLE_WITH_CUDA return Used(cuda_pinned); #else PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device."); #endif } } // namespace legacy namespace allocation { LegacyMemMonitor GPUMemMonitor; Allocation *LegacyAllocator::AllocateImpl(size_t size, Allocator::Attr attr) { void *ptr = boost::apply_visitor(legacy::AllocVisitor(size), place_); return new Allocation(ptr, size, place_); } void LegacyAllocator::Free(Allocation *allocation) { boost::apply_visitor( legacy::FreeVisitor(allocation->ptr(), allocation->size()), allocation->place()); delete allocation; } bool MemInfo::Add(const size_t &size) { std::lock_guard lock(mutex_); usage_ += size; bool peak_point = usage_ > peak_usage_; if (peak_point) peak_usage_ = usage_; return peak_point; } void MemInfo::Minus(const size_t &size) { std::lock_guard lock(mutex_); usage_ -= size; } uint64_t MemInfo::GetPeakUsage() const { return peak_usage_; } LegacyMemMonitor::~LegacyMemMonitor() { for (auto &item : gpu_mem_info_) delete item.second; } void LegacyMemMonitor::Initialize(const int &device_num) { for (auto i = 0; i < device_num; ++i) { gpu_mem_info_[i] = new MemInfo(); } } void LegacyMemMonitor::Add(const int &device, const size_t &size) { if (gpu_mem_info_[device]->Add(size)) { VLOG(3) << "#LegacyMemMonitor# device: " << device << " peak memory usage : " << (gpu_mem_info_[device]->GetPeakUsage() >> 20) << " MiB"; } } void LegacyMemMonitor::Minus(const int &device, const size_t &size) { gpu_mem_info_[device]->Minus(size); } uint64_t LegacyMemMonitor::GetMemUsage(const int &device) const { return gpu_mem_info_.find(device) == gpu_mem_info_.end() ? 0 : gpu_mem_info_.at(device)->GetPeakUsage(); } void LegacyMemMonitor::PrintMemUsage() { std::vector devices; for (const auto &item : gpu_mem_info_) { devices.emplace_back(item.first); } std::sort(devices.begin(), devices.end()); for (const auto &device : devices) { std::cout << "Device : " << device << " Peak Memory Usage : " << (gpu_mem_info_[device]->GetPeakUsage() >> 20) << " MiB" << std::endl; } } } // namespace allocation } // namespace memory } // namespace paddle