# Copyright PaddlePaddle contributors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle.v2.layer as layer import paddle.v2.topology as topology import paddle.v2.data_type as data_type import paddle.trainer_config_helpers as conf_helps import paddle.trainer.PyDataProvider2 as pydp2 class TestTopology(unittest.TestCase): def test_data_type(self): pixel = layer.data(name='pixel', type=data_type.dense_vector(784)) label = layer.data(name='label', type=data_type.integer_value(10)) hidden = layer.fc(input=pixel, size=100, act=conf_helps.SigmoidActivation()) inference = layer.fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation()) cost = layer.classification_cost(input=inference, label=label) topo = topology.Topology(cost) data_types = topo.data_type() self.assertEqual(len(data_types), 2) pixel_data_type = filter(lambda type: type[0] == "pixel", data_types) self.assertEqual(len(pixel_data_type), 1) pixel_data_type = pixel_data_type[0] self.assertEqual(pixel_data_type[1].type, pydp2.DataType.Dense) self.assertEqual(pixel_data_type[1].dim, 784) label_data_type = filter(lambda type: type[0] == "label", data_types) self.assertEqual(len(label_data_type), 1) label_data_type = label_data_type[0] self.assertEqual(label_data_type[1].type, pydp2.DataType.Index) self.assertEqual(label_data_type[1].dim, 10) def test_get_layer(self): pixel = layer.data(name='pixel', type=data_type.dense_vector(784)) label = layer.data(name='label', type=data_type.integer_value(10)) hidden = layer.fc(input=pixel, size=100, act=conf_helps.SigmoidActivation()) inference = layer.fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation()) cost = layer.classification_cost(input=inference, label=label) topo = topology.Topology(cost) pixel_layer = topo.get_layer("pixel") label_layer = topo.get_layer("label") self.assertEqual(pixel_layer, pixel) self.assertEqual(label_layer, label) def test_parse(self): pixel = layer.data(name='pixel', type=data_type.dense_vector(784)) label = layer.data(name='label', type=data_type.integer_value(10)) hidden = layer.fc(input=pixel, size=100, act=conf_helps.SigmoidActivation()) inference = layer.fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation()) maxid = layer.max_id(input=inference) cost1 = layer.classification_cost(input=inference, label=label) cost2 = layer.cross_entropy_cost(input=inference, label=label) topology.Topology(cost2).proto() topology.Topology([cost1]).proto() topology.Topology([cost1, cost2]).proto() topology.Topology([inference, maxid]).proto() if __name__ == '__main__': unittest.main()