# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys # add python path of PaddleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) sys.path.insert(0, parent_path) # ignore warning log import warnings warnings.filterwarnings('ignore') import paddle from ppdet.core.workspace import create, load_config, merge_config from ppdet.utils.check import check_gpu, check_npu, check_xpu, check_mlu, check_version, check_config from ppdet.utils.cli import ArgsParser, merge_args from ppdet.engine import Trainer, init_parallel_env from ppdet.metrics.coco_utils import json_eval_results from ppdet.slim import build_slim_model from ppdet.utils.logger import setup_logger logger = setup_logger('eval') def parse_args(): parser = ArgsParser() parser.add_argument( "--output_eval", default=None, type=str, help="Evaluation directory, default is current directory.") parser.add_argument( '--json_eval', action='store_true', default=False, help='Whether to re eval with already exists bbox.json or mask.json') parser.add_argument( "--slim_config", default=None, type=str, help="Configuration file of slim method.") # TODO: bias should be unified parser.add_argument( "--bias", action="store_true", help="whether add bias or not while getting w and h") parser.add_argument( "--classwise", action="store_true", help="whether per-category AP and draw P-R Curve or not.") parser.add_argument( '--save_prediction_only', action='store_true', default=False, help='Whether to save the evaluation results only') parser.add_argument( "--amp", action='store_true', default=False, help="Enable auto mixed precision eval.") # for smalldet slice_infer parser.add_argument( "--slice_infer", action='store_true', help="Whether to slice the image and merge the inference results for small object detection." ) parser.add_argument( '--slice_size', nargs='+', type=int, default=[640, 640], help="Height of the sliced image.") parser.add_argument( "--overlap_ratio", nargs='+', type=float, default=[0.25, 0.25], help="Overlap height ratio of the sliced image.") parser.add_argument( "--combine_method", type=str, default='nms', help="Combine method of the sliced images' detection results, choose in ['nms', 'nmm', 'concat']." ) parser.add_argument( "--match_threshold", type=float, default=0.6, help="Combine method matching threshold.") parser.add_argument( "--match_metric", type=str, default='ios', help="Combine method matching metric, choose in ['iou', 'ios'].") args = parser.parse_args() return args def run(FLAGS, cfg): if FLAGS.json_eval: logger.info( "In json_eval mode, PaddleDetection will evaluate json files in " "output_eval directly. And proposal.json, bbox.json and mask.json " "will be detected by default.") json_eval_results( cfg.metric, json_directory=FLAGS.output_eval, dataset=create('EvalDataset')()) return # init parallel environment if nranks > 1 init_parallel_env() # build trainer trainer = Trainer(cfg, mode='eval') # load weights trainer.load_weights(cfg.weights) # training if FLAGS.slice_infer: trainer.evaluate_slice( slice_size=FLAGS.slice_size, overlap_ratio=FLAGS.overlap_ratio, combine_method=FLAGS.combine_method, match_threshold=FLAGS.match_threshold, match_metric=FLAGS.match_metric) else: trainer.evaluate() def main(): FLAGS = parse_args() cfg = load_config(FLAGS.config) merge_args(cfg, FLAGS) merge_config(FLAGS.opt) # disable npu in config by default if 'use_npu' not in cfg: cfg.use_npu = False # disable xpu in config by default if 'use_xpu' not in cfg: cfg.use_xpu = False if 'use_gpu' not in cfg: cfg.use_gpu = False # disable mlu in config by default if 'use_mlu' not in cfg: cfg.use_mlu = False if cfg.use_gpu: place = paddle.set_device('gpu') elif cfg.use_npu: place = paddle.set_device('npu') elif cfg.use_xpu: place = paddle.set_device('xpu') elif cfg.use_mlu: place = paddle.set_device('mlu') else: place = paddle.set_device('cpu') if FLAGS.slim_config: cfg = build_slim_model(cfg, FLAGS.slim_config, mode='eval') check_config(cfg) check_gpu(cfg.use_gpu) check_npu(cfg.use_npu) check_xpu(cfg.use_xpu) check_mlu(cfg.use_mlu) check_version() run(FLAGS, cfg) if __name__ == '__main__': main()