architecture: FasterRCNN pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar weights: output/faster_rcnn_r50_1x_coco/model_final.pdparams load_static_weights: True # Model Achitecture FasterRCNN: # model anchor info flow anchor: Anchor proposal: Proposal # model feat info flow backbone: ResNet rpn_head: RPNHead bbox_head: BBoxHead # post process bbox_post_process: BBoxPostProcess ResNet: # index 0 stands for res2 depth: 50 norm_type: bn freeze_at: 0 return_idx: [2] num_stages: 3 RPNHead: rpn_feat: name: RPNFeat feat_in: 1024 feat_out: 1024 anchor_per_position: 15 rpn_channel: 1024 Anchor: anchor_generator: name: AnchorGeneratorRPN anchor_sizes: [32, 64, 128, 256, 512] aspect_ratios: [0.5, 1.0, 2.0] stride: [16.0, 16.0] variance: [1.0, 1.0, 1.0, 1.0] anchor_target_generator: name: AnchorTargetGeneratorRPN batch_size_per_im: 256 fg_fraction: 0.5 negative_overlap: 0.3 positive_overlap: 0.7 straddle_thresh: 0.0 Proposal: proposal_generator: name: ProposalGenerator min_size: 0.0 nms_thresh: 0.7 train_pre_nms_top_n: 12000 train_post_nms_top_n: 2000 infer_pre_nms_top_n: 6000 infer_post_nms_top_n: 1000 proposal_target_generator: name: ProposalTargetGenerator batch_size_per_im: 512 bbox_reg_weights: [[0.1, 0.1, 0.2, 0.2],] bg_thresh_hi: [0.5,] bg_thresh_lo: [0.0,] fg_thresh: [0.5,] fg_fraction: 0.25 BBoxHead: bbox_feat: name: BBoxFeat roi_extractor: name: RoIAlign resolution: 14 sampling_ratio: 0 start_level: 0 end_level: 0 head_feat: name: Res5Head feat_in: 1024 feat_out: 512 with_pool: true in_feat: 2048 BBoxPostProcess: decode: name: RCNNBox num_classes: 81 batch_size: 1 nms: name: MultiClassNMS keep_top_k: 100 score_threshold: 0.05 nms_threshold: 0.5