# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from paddle.fluid.param_attr import ParamAttr from paddle.fluid.initializer import NumpyArrayInitializer from paddle import fluid from ppdet.core.workspace import register, serializable from .iou_loss import IouLoss __all__ = ['DiouLossYolo'] @register @serializable class DiouLossYolo(IouLoss): """ Distance-IoU Loss, see https://arxiv.org/abs/1911.08287 Args: loss_weight (float): diou loss weight, default is 5 max_height (int): max height of input to support random shape input max_width (int): max width of input to support random shape input """ def __init__(self, loss_weight=5, max_height=608, max_width=608): self._loss_weight = loss_weight self._MAX_HI = max_height self._MAX_WI = max_width def __call__(self, x, y, w, h, tx, ty, tw, th, anchors, downsample_ratio, batch_size, eps=1.e-10): ''' Args: x | y | w | h ([Variables]): the output of yolov3 for encoded x|y|w|h tx |ty |tw |th ([Variables]): the target of yolov3 for encoded x|y|w|h anchors ([float]): list of anchors for current output layer downsample_ratio (float): the downsample ratio for current output layer batch_size (int): training batch size eps (float): the decimal to prevent the denominator eqaul zero ''' x1, y1, x2, y2 = self._bbox_transform( x, y, w, h, anchors, downsample_ratio, batch_size, False, 1.0, eps) x1g, y1g, x2g, y2g = self._bbox_transform(tx, ty, tw, th, anchors, downsample_ratio, batch_size, True, 1.0, eps) #central coordinates cx = (x1 + x2) / 2 cy = (y1 + y2) / 2 w = x2 - x1 h = y2 - y1 cxg = (x1g + x2g) / 2 cyg = (y1g + y2g) / 2 wg = x2g - x1g hg = y2g - y1g x2 = fluid.layers.elementwise_max(x1, x2) y2 = fluid.layers.elementwise_max(y1, y2) # A and B xkis1 = fluid.layers.elementwise_max(x1, x1g) ykis1 = fluid.layers.elementwise_max(y1, y1g) xkis2 = fluid.layers.elementwise_min(x2, x2g) ykis2 = fluid.layers.elementwise_min(y2, y2g) # A or B xc1 = fluid.layers.elementwise_min(x1, x1g) yc1 = fluid.layers.elementwise_min(y1, y1g) xc2 = fluid.layers.elementwise_max(x2, x2g) yc2 = fluid.layers.elementwise_max(y2, y2g) intsctk = (xkis2 - xkis1) * (ykis2 - ykis1) intsctk = intsctk * fluid.layers.greater_than( xkis2, xkis1) * fluid.layers.greater_than(ykis2, ykis1) unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g ) - intsctk + eps iouk = intsctk / unionk # diou_loss dist_intersection = (cx - cxg) * (cx - cxg) + (cy - cyg) * (cy - cyg) dist_union = (xc2 - xc1) * (xc2 - xc1) + (yc2 - yc1) * (yc2 - yc1) diou_term = (dist_intersection + eps) / (dist_union + eps) loss_diou = 1. - iouk + diou_term loss_diou = loss_diou * self._loss_weight return loss_diou