# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import OrderedDict from paddle import fluid from paddle.fluid.param_attr import ParamAttr from paddle.fluid.framework import Variable from paddle.fluid.regularizer import L2Decay from ppdet.core.workspace import register, serializable from numbers import Integral from paddle.fluid.initializer import MSRA import math from .name_adapter import NameAdapter __all__ = ['HRNet'] @register @serializable class HRNet(object): """ HRNet, see https://arxiv.org/abs/1908.07919 Args: depth (int): ResNet depth, should be 18, 34, 50, 101, 152. freeze_at (int): freeze the backbone at which stage norm_type (str): normalization type, 'bn'/'sync_bn'/'affine_channel' freeze_norm (bool): freeze normalization layers norm_decay (float): weight decay for normalization layer weights variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently feature_maps (list): index of stages whose feature maps are returned """ def __init__(self, width=40, has_se=False, freeze_at=2, norm_type='bn', freeze_norm=True, norm_decay=0., feature_maps=[2, 3, 4, 5]): super(HRNet, self).__init__() if isinstance(feature_maps, Integral): feature_maps = [feature_maps] assert 0 <= freeze_at <= 4, "freeze_at should be 0, 1, 2, 3 or 4" assert len(feature_maps) > 0, "need one or more feature maps" assert norm_type in ['bn', 'sync_bn'] self.width = width self.has_se = has_se self.channels = { 18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]], 30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]], 32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]], 40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]], 44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]], 48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]], 60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]], 64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]], } self.freeze_at = freeze_at self.norm_type = norm_type self.norm_decay = norm_decay self.freeze_norm = freeze_norm self._model_type = 'HRNet' self.feature_maps = feature_maps self.end_points = [] return def net(self, input, class_dim=1000): width = self.width channels_2, channels_3, channels_4 = self.channels[width] num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3 x = self.conv_bn_layer( input=input, filter_size=3, num_filters=64, stride=2, if_act=True, name='layer1_1') x = self.conv_bn_layer( input=x, filter_size=3, num_filters=64, stride=2, if_act=True, name='layer1_2') la1 = self.layer1(x, name='layer2') tr1 = self.transition_layer([la1], [256], channels_2, name='tr1') st2 = self.stage(tr1, num_modules_2, channels_2, name='st2') tr2 = self.transition_layer(st2, channels_2, channels_3, name='tr2') st3 = self.stage(tr2, num_modules_3, channels_3, name='st3') tr3 = self.transition_layer(st3, channels_3, channels_4, name='tr3') st4 = self.stage(tr3, num_modules_4, channels_4, name='st4') self.end_points = st4 return st4[-1] def layer1(self, input, name=None): conv = input for i in range(4): conv = self.bottleneck_block( conv, num_filters=64, downsample=True if i == 0 else False, name=name + '_' + str(i + 1)) return conv def transition_layer(self, x, in_channels, out_channels, name=None): num_in = len(in_channels) num_out = len(out_channels) out = [] for i in range(num_out): if i < num_in: if in_channels[i] != out_channels[i]: residual = self.conv_bn_layer( x[i], filter_size=3, num_filters=out_channels[i], name=name + '_layer_' + str(i + 1)) out.append(residual) else: out.append(x[i]) else: residual = self.conv_bn_layer( x[-1], filter_size=3, num_filters=out_channels[i], stride=2, name=name + '_layer_' + str(i + 1)) out.append(residual) return out def branches(self, x, block_num, channels, name=None): out = [] for i in range(len(channels)): residual = x[i] for j in range(block_num): residual = self.basic_block( residual, channels[i], name=name + '_branch_layer_' + str(i + 1) + '_' + str(j + 1)) out.append(residual) return out def fuse_layers(self, x, channels, multi_scale_output=True, name=None): out = [] for i in range(len(channels) if multi_scale_output else 1): residual = x[i] for j in range(len(channels)): if j > i: y = self.conv_bn_layer( x[j], filter_size=1, num_filters=channels[i], if_act=False, name=name + '_layer_' + str(i + 1) + '_' + str(j + 1)) y = fluid.layers.resize_nearest(input=y, scale=2**(j - i)) residual = fluid.layers.elementwise_add( x=residual, y=y, act=None) elif j < i: y = x[j] for k in range(i - j): if k == i - j - 1: y = self.conv_bn_layer( y, filter_size=3, num_filters=channels[i], stride=2, if_act=False, name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1)) else: y = self.conv_bn_layer( y, filter_size=3, num_filters=channels[j], stride=2, name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1)) residual = fluid.layers.elementwise_add( x=residual, y=y, act=None) residual = fluid.layers.relu(residual) out.append(residual) return out def high_resolution_module(self, x, channels, multi_scale_output=True, name=None): residual = self.branches(x, 4, channels, name=name) out = self.fuse_layers( residual, channels, multi_scale_output=multi_scale_output, name=name) return out def stage(self, x, num_modules, channels, multi_scale_output=True, name=None): out = x for i in range(num_modules): if i == num_modules - 1 and multi_scale_output == False: out = self.high_resolution_module( out, channels, multi_scale_output=False, name=name + '_' + str(i + 1)) else: out = self.high_resolution_module( out, channels, name=name + '_' + str(i + 1)) return out def last_cls_out(self, x, name=None): out = [] num_filters_list = [128, 256, 512, 1024] for i in range(len(x)): out.append( self.conv_bn_layer( input=x[i], filter_size=1, num_filters=num_filters_list[i], name=name + 'conv_' + str(i + 1))) return out def basic_block(self, input, num_filters, stride=1, downsample=False, name=None): residual = input conv = self.conv_bn_layer( input=input, filter_size=3, num_filters=num_filters, stride=stride, name=name + '_conv1') conv = self.conv_bn_layer( input=conv, filter_size=3, num_filters=num_filters, if_act=False, name=name + '_conv2') if downsample: residual = self.conv_bn_layer( input=input, filter_size=1, num_filters=num_filters, if_act=False, name=name + '_downsample') if self.has_se: conv = self.squeeze_excitation( input=conv, num_channels=num_filters, reduction_ratio=16, name='fc' + name) return fluid.layers.elementwise_add(x=residual, y=conv, act='relu') def bottleneck_block(self, input, num_filters, stride=1, downsample=False, name=None): residual = input conv = self.conv_bn_layer( input=input, filter_size=1, num_filters=num_filters, name=name + '_conv1') conv = self.conv_bn_layer( input=conv, filter_size=3, num_filters=num_filters, stride=stride, name=name + '_conv2') conv = self.conv_bn_layer( input=conv, filter_size=1, num_filters=num_filters * 4, if_act=False, name=name + '_conv3') if downsample: residual = self.conv_bn_layer( input=input, filter_size=1, num_filters=num_filters * 4, if_act=False, name=name + '_downsample') if self.has_se: conv = self.squeeze_excitation( input=conv, num_channels=num_filters * 4, reduction_ratio=16, name='fc' + name) return fluid.layers.elementwise_add(x=residual, y=conv, act='relu') def squeeze_excitation(self, input, num_channels, reduction_ratio, name=None): pool = fluid.layers.pool2d( input=input, pool_size=0, pool_type='avg', global_pooling=True) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) squeeze = fluid.layers.fc( input=pool, size=num_channels / reduction_ratio, act='relu', param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=name + '_sqz_weights'), bias_attr=ParamAttr(name=name + '_sqz_offset')) stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0) excitation = fluid.layers.fc( input=squeeze, size=num_channels, act='sigmoid', param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=name + '_exc_weights'), bias_attr=ParamAttr(name=name + '_exc_offset')) scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0) return scale def conv_bn_layer(self, input, filter_size, num_filters, stride=1, padding=1, num_groups=1, if_act=True, name=None): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=num_groups, act=None, param_attr=ParamAttr( initializer=MSRA(), name=name + '_weights'), bias_attr=False) bn_name = name + '_bn' bn = self._bn(input=conv, bn_name=bn_name) if if_act: bn = fluid.layers.relu(bn) return bn def _bn(self, input, act=None, bn_name=None): norm_lr = 0. if self.freeze_norm else 1. norm_decay = self.norm_decay pattr = ParamAttr( name=bn_name + '_scale', learning_rate=norm_lr, regularizer=L2Decay(norm_decay)) battr = ParamAttr( name=bn_name + '_offset', learning_rate=norm_lr, regularizer=L2Decay(norm_decay)) global_stats = True if self.freeze_norm else False out = fluid.layers.batch_norm( input=input, act=act, name=bn_name + '.output.1', param_attr=pattr, bias_attr=battr, moving_mean_name=bn_name + '_mean', moving_variance_name=bn_name + '_variance', use_global_stats=global_stats) scale = fluid.framework._get_var(pattr.name) bias = fluid.framework._get_var(battr.name) if self.freeze_norm: scale.stop_gradient = True bias.stop_gradient = True return out def __call__(self, input): assert isinstance(input, Variable) assert not (set(self.feature_maps) - set([2, 3, 4, 5])), \ "feature maps {} not in [2, 3, 4, 5]".format(self.feature_maps) res_endpoints = [] res = input feature_maps = self.feature_maps self.net(input) for i in feature_maps: res = self.end_points[i - 2] if i in self.feature_maps: res_endpoints.append(res) if self.freeze_at >= i: res.stop_gradient = True return OrderedDict([('res{}_sum'.format(self.feature_maps[idx]), feat) for idx, feat in enumerate(res_endpoints)])