# PP-Human属性识别模块 行人属性识别在智慧社区,工业巡检,交通监控等方向都具有广泛应用,PP-Human中集成了属性识别模块,属性包含性别、年龄、帽子、眼镜、上衣下衣款式等。我们提供了预训练模型,用户可以直接下载使用。 | 任务 | 算法 | 精度 | 预测速度(ms) |下载链接 | |:---------------------|:---------:|:------:|:------:| :---------------------------------------------------------------------------------: | | 行人检测/跟踪 | PP-YOLOE | mAP: 56.3
MOTA: 72.0 | 检测: 28ms
跟踪:33.1ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | | 行人属性分析 | StrongBaseline | mA: 94.86 | 单人 2ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip) | 1. 检测/跟踪模型精度为MOT17,CrowdHuman,HIEVE和部分业务数据融合训练测试得到 2. 行人属性分析精度为PA100k,RAPv2,PETA和部分业务数据融合训练测试得到 3. 预测速度为T4 机器上使用TensorRT FP16时的速度, 速度包含数据预处理、模型预测、后处理全流程 ## 使用方法 1. 从上表链接中下载模型并解压到```./output_inference```路径下 2. 图片输入时,启动命令如下 ```python python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml \ --image_file=test_image.jpg \ --device=gpu \ --enable_attr=True ``` 3. 视频输入时,启动命令如下 ```python python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml \ --video_file=test_video.mp4 \ --device=gpu \ --enable_attr=True ``` 4. 若修改模型路径,有以下两种方式: - ```./deploy/pphuman/config/infer_cfg.yml```下可以配置不同模型路径,属性识别模型修改ATTR字段下配置 - **(推荐)**命令行中增加`--model_dir`修改模型路径: ```python python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml \ --video_file=test_video.mp4 \ --device=gpu \ --enable_attr=True \ --model_dir det=ppyoloe/ ``` 测试效果如下:
数据来源及版权归属:天覆科技,感谢提供并开源实际场景数据,仅限学术研究使用 ## 方案说明 1. 目标检测/多目标跟踪获取图片/视频输入中的行人检测框,模型方案为PP-YOLOE,详细文档参考[PP-YOLOE](../../../configs/ppyoloe) 2. 通过行人检测框的坐标在输入图像中截取每个行人 3. 使用属性识别分析每个行人对应属性,属性类型与PA100k数据集相同,具体属性列表如下: ``` - 性别:男、女 - 年龄:小于18、18-60、大于60 - 朝向:朝前、朝后、侧面 - 配饰:眼镜、帽子、无 - 正面持物:是、否 - 包:双肩包、单肩包、手提包 - 上衣风格:带条纹、带logo、带格子、拼接风格 - 下装风格:带条纹、带图案 - 短袖上衣:是、否 - 长袖上衣:是、否 - 长外套:是、否 - 长裤:是、否 - 短裤:是、否 - 短裙&裙子:是、否 - 穿靴:是、否 ``` 4. 属性识别模型方案为[StrongBaseline](https://arxiv.org/pdf/2107.03576.pdf),模型结构为基于ResNet50的多分类网络结构,引入Weighted BCE loss和EMA提升模型效果。 ## 参考文献 ``` @article{jia2020rethinking, title={Rethinking of pedestrian attribute recognition: Realistic datasets with efficient method}, author={Jia, Jian and Huang, Houjing and Yang, Wenjie and Chen, Xiaotang and Huang, Kaiqi}, journal={arXiv preprint arXiv:2005.11909}, year={2020} } ```