architecture: CLRNet CLRNet: backbone: CLRResNet neck: CLRFPN clr_head: CLRHead CLRResNet: resnet: 'resnet18' pretrained: True CLRFPN: in_channels: [128,256,512] out_channel: 64 extra_stage: 0 CLRHead: prior_feat_channels: 64 fc_hidden_dim: 64 num_priors: 192 num_fc: 2 refine_layers: 3 sample_points: 36 loss: CLRNetLoss conf_threshold: 0.4 nms_thres: 0.8 CLRNetLoss: cls_loss_weight : 2.0 xyt_loss_weight : 0.2 iou_loss_weight : 2.0 seg_loss_weight : 1.0 refine_layers : 3 ignore_label: 255 bg_weight: 0.4 # for visualize lane detection results sample_y: start: 589 end: 230 step: -20