# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np __all__ = ['get_isr_p_func'] def get_isr_p_func(pos_iou_thresh=0.25, bias=0, k=2): def irs_p(x): np.save("data", x) x = np.array(x) max_ious = x[:, :, 0] gt_inds = x[:, :, 1].astype('int32') cls = x[:, :, 2].astype('int32') # # n_{max}: max gt box num in each class # valid_gt = gt_box[:, :, 2] > 0. # valid_gt_label = gt_label[valid_gt] # max_l_num = np.bincount(valid_gt_label).max() # divide gt index in each sample gt_inds = gt_inds + np.arange(gt_inds.shape[ 0])[:, np.newaxis] * gt_inds.shape[1] all_pos_weights = np.ones_like(max_ious) pos_mask = max_ious > pos_iou_thresh cls = np.reshape(cls, list(max_ious.shape) + [-1]) max_ious = max_ious[pos_mask] pos_weights = all_pos_weights[pos_mask] gt_inds = gt_inds[pos_mask] cls = cls[pos_mask] max_l_num = np.bincount(cls.reshape(-1)).max() for l in np.unique(cls): l_inds = np.nonzero(cls == l)[0] l_gt_inds = gt_inds[l_inds] for t in np.unique(l_gt_inds): t_inds = np.array(l_inds)[l_gt_inds == t] t_max_ious = max_ious[t_inds] t_max_iou_rank = np.argsort(-t_max_ious).argsort().astype( 'float32') max_ious[t_inds] += np.clip(t_max_iou_rank, 0., None) l_max_ious = max_ious[l_inds] l_max_iou_rank = np.argsort(-l_max_ious).argsort().astype('float32') weight_factor = np.clip(max_l_num - l_max_iou_rank, 0., None) / max_l_num weight_factor = np.power(bias + (1 - bias) * weight_factor, k) pos_weights[l_inds] *= weight_factor * 1.2 pos_weights = pos_weights / np.mean(pos_weights) all_pos_weights[pos_mask] = pos_weights return all_pos_weights return irs_p if __name__ == "__main__": import numpy as np import paddle.fluid as fluid x_np = np.load('./data.npy') x = fluid.data(name='x', shape=[8, 15552, 3], dtype='float32') pos_weights = fluid.default_main_program().current_block().create_var( name="pos_weights", dtype='float32', shape=[8, 15552]) isr_p = get_isr_p_func() fluid.layers.py_func(isr_p, x, pos_weights) place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) ret = exe.run(fetch_list=[pos_weights.name], feed={'x': x_np}) print(ret) np.save("ret", ret[0])