# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import random import datetime import numpy as np from PIL import Image import paddle from paddle.distributed import ParallelEnv, fleet from paddle import amp from paddle.static import InputSpec from ppdet.core.workspace import create from ppdet.utils.checkpoint import load_weight, load_pretrain_weight from ppdet.utils.visualizer import visualize_results from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results from ppdet.data.source.category import get_categories import ppdet.utils.stats as stats from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter from .export_utils import _dump_infer_config from ppdet.utils.logger import setup_logger logger = setup_logger('ppdet.engine') __all__ = ['Trainer'] class Trainer(object): def __init__(self, cfg, mode='train'): self.cfg = cfg assert mode.lower() in ['train', 'eval', 'test'], \ "mode should be 'train', 'eval' or 'test'" self.mode = mode.lower() self.optimizer = None self.slim = None # build model self.model = create(cfg.architecture) # model slim build if 'slim' in cfg and cfg.slim: if self.mode == 'train': self.load_weights(cfg.pretrain_weights) self.slim = create(cfg.slim) self.slim(self.model) # build data loader self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())] if self.mode == 'train': self.loader = create('{}Reader'.format(self.mode.capitalize()))( self.dataset, cfg.worker_num) # EvalDataset build with BatchSampler to evaluate in single device # TODO: multi-device evaluate if self.mode == 'eval': self._eval_batch_sampler = paddle.io.BatchSampler( self.dataset, batch_size=self.cfg.EvalReader['batch_size']) self.loader = create('{}Reader'.format(self.mode.capitalize()))( self.dataset, cfg.worker_num, self._eval_batch_sampler) # TestDataset build after user set images, skip loader creation here # build optimizer in train mode if self.mode == 'train': steps_per_epoch = len(self.loader) self.lr = create('LearningRate')(steps_per_epoch) self.optimizer = create('OptimizerBuilder')(self.lr, self.model.parameters()) self._nranks = ParallelEnv().nranks self._local_rank = ParallelEnv().local_rank self.status = {} self.start_epoch = 0 self.end_epoch = cfg.epoch # initial default callbacks self._init_callbacks() # initial default metrics self._init_metrics() self._reset_metrics() def _init_callbacks(self): if self.mode == 'train': self._callbacks = [LogPrinter(self), Checkpointer(self)] if 'use_vdl' in self.cfg and self.cfg.use_vdl: self._callbacks.append(VisualDLWriter(self)) self._compose_callback = ComposeCallback(self._callbacks) elif self.mode == 'eval': self._callbacks = [LogPrinter(self)] if self.cfg.metric == 'WiderFace': self._callbacks.append(WiferFaceEval(self)) self._compose_callback = ComposeCallback(self._callbacks) elif self.mode == 'test' and 'use_vdl' in self.cfg and self.cfg.use_vdl: self._callbacks = [VisualDLWriter(self)] self._compose_callback = ComposeCallback(self._callbacks) else: self._callbacks = [] self._compose_callback = None def _init_metrics(self, validate=False): if self.mode == 'test' or (self.mode == 'train' and not validate): self._metrics = [] return classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False if self.cfg.metric == 'COCO': # TODO: bias should be unified bias = self.cfg['bias'] if 'bias' in self.cfg else 0 output_eval = self.cfg['output_eval'] \ if 'output_eval' in self.cfg else None clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \ if self.mode == 'eval' else None self._metrics = [ COCOMetric( anno_file=self.dataset.get_anno(), clsid2catid=clsid2catid, classwise=classwise, output_eval=output_eval, bias=bias) ] elif self.cfg.metric == 'VOC': self._metrics = [ VOCMetric( label_list=self.dataset.get_label_list(), class_num=self.cfg.num_classes, map_type=self.cfg.map_type, classwise=classwise) ] elif self.cfg.metric == 'WiderFace': multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True self._metrics = [ WiderFaceMetric( image_dir=os.path.join(self.dataset.dataset_dir, self.dataset.image_dir), anno_file=self.dataset.get_anno(), multi_scale=multi_scale) ] else: logger.warn("Metric not support for metric type {}".format( self.cfg.metric)) self._metrics = [] def _reset_metrics(self): for metric in self._metrics: metric.reset() def register_callbacks(self, callbacks): callbacks = [c for c in list(callbacks) if c is not None] for c in callbacks: assert isinstance(c, Callback), \ "metrics shoule be instances of subclass of Metric" self._callbacks.extend(callbacks) self._compose_callback = ComposeCallback(self._callbacks) def register_metrics(self, metrics): metrics = [m for m in list(metrics) if m is not None] for m in metrics: assert isinstance(m, Metric), \ "metrics shoule be instances of subclass of Metric" self._metrics.extend(metrics) def load_weights(self, weights): self.start_epoch = 0 load_pretrain_weight(self.model, weights) logger.debug("Load weights {} to start training".format(weights)) def resume_weights(self, weights): self.start_epoch = load_weight(self.model, weights, self.optimizer) logger.debug("Resume weights of epoch {}".format(self.start_epoch)) def train(self, validate=False): assert self.mode == 'train', "Model not in 'train' mode" # if validation in training is enabled, metrics should be re-init if validate: self._init_metrics(validate=validate) self._reset_metrics() model = self.model if self.cfg.fleet: model = fleet.distributed_model(model) self.optimizer = fleet.distributed_optimizer( self.optimizer).user_defined_optimizer elif self._nranks > 1: model = paddle.DataParallel(self.model) # initial fp16 if self.cfg.fp16: scaler = amp.GradScaler( enable=self.cfg.use_gpu, init_loss_scaling=1024) self.status.update({ 'epoch_id': self.start_epoch, 'step_id': 0, 'steps_per_epoch': len(self.loader) }) self.status['batch_time'] = stats.SmoothedValue( self.cfg.log_iter, fmt='{avg:.4f}') self.status['data_time'] = stats.SmoothedValue( self.cfg.log_iter, fmt='{avg:.4f}') self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter) for epoch_id in range(self.start_epoch, self.cfg.epoch): self.status['mode'] = 'train' self.status['epoch_id'] = epoch_id self._compose_callback.on_epoch_begin(self.status) self.loader.dataset.set_epoch(epoch_id) model.train() iter_tic = time.time() for step_id, data in enumerate(self.loader): self.status['data_time'].update(time.time() - iter_tic) self.status['step_id'] = step_id self._compose_callback.on_step_begin(self.status) if self.cfg.fp16: with amp.auto_cast(enable=self.cfg.use_gpu): # model forward outputs = model(data) loss = outputs['loss'] # model backward scaled_loss = scaler.scale(loss) scaled_loss.backward() # in dygraph mode, optimizer.minimize is equal to optimizer.step scaler.minimize(self.optimizer, scaled_loss) else: # model forward outputs = model(data) loss = outputs['loss'] # model backward loss.backward() self.optimizer.step() curr_lr = self.optimizer.get_lr() self.lr.step() self.optimizer.clear_grad() self.status['learning_rate'] = curr_lr if self._nranks < 2 or self._local_rank == 0: self.status['training_staus'].update(outputs) self.status['batch_time'].update(time.time() - iter_tic) self._compose_callback.on_step_end(self.status) iter_tic = time.time() self._compose_callback.on_epoch_end(self.status) if validate and (self._nranks < 2 or self._local_rank == 0) \ and (epoch_id % self.cfg.snapshot_epoch == 0 \ or epoch_id == self.end_epoch - 1): if not hasattr(self, '_eval_loader'): # build evaluation dataset and loader self._eval_dataset = self.cfg.EvalDataset self._eval_batch_sampler = \ paddle.io.BatchSampler( self._eval_dataset, batch_size=self.cfg.EvalReader['batch_size']) self._eval_loader = create('EvalReader')( self._eval_dataset, self.cfg.worker_num, batch_sampler=self._eval_batch_sampler) with paddle.no_grad(): self.status['save_best_model'] = True self._eval_with_loader(self._eval_loader) def _eval_with_loader(self, loader): sample_num = 0 tic = time.time() self._compose_callback.on_epoch_begin(self.status) self.status['mode'] = 'eval' self.model.eval() for step_id, data in enumerate(loader): self.status['step_id'] = step_id self._compose_callback.on_step_begin(self.status) # forward outs = self.model(data) # update metrics for metric in self._metrics: metric.update(data, outs) sample_num += data['im_id'].numpy().shape[0] self._compose_callback.on_step_end(self.status) self.status['sample_num'] = sample_num self.status['cost_time'] = time.time() - tic # accumulate metric to log out for metric in self._metrics: metric.accumulate() metric.log() self._compose_callback.on_epoch_end(self.status) # reset metric states for metric may performed multiple times self._reset_metrics() def evaluate(self): self._eval_with_loader(self.loader) def predict(self, images, draw_threshold=0.5, output_dir='output'): self.dataset.set_images(images) loader = create('TestReader')(self.dataset, 0) imid2path = self.dataset.get_imid2path() anno_file = self.dataset.get_anno() clsid2catid, catid2name = get_categories(self.cfg.metric, anno_file) # Run Infer self.status['mode'] = 'test' self.model.eval() for step_id, data in enumerate(loader): self.status['step_id'] = step_id # forward outs = self.model(data) for key in ['im_shape', 'scale_factor', 'im_id']: outs[key] = data[key] for key, value in outs.items(): outs[key] = value.numpy() batch_res = get_infer_results(outs, clsid2catid) bbox_num = outs['bbox_num'] start = 0 for i, im_id in enumerate(outs['im_id']): image_path = imid2path[int(im_id)] image = Image.open(image_path).convert('RGB') self.status['original_image'] = np.array(image.copy()) end = start + bbox_num[i] bbox_res = batch_res['bbox'][start:end] \ if 'bbox' in batch_res else None mask_res = batch_res['mask'][start:end] \ if 'mask' in batch_res else None segm_res = batch_res['segm'][start:end] \ if 'segm' in batch_res else None image = visualize_results(image, bbox_res, mask_res, segm_res, int(outs['im_id']), catid2name, draw_threshold) self.status['result_image'] = np.array(image.copy()) if self._compose_callback: self._compose_callback.on_step_end(self.status) # save image with detection save_name = self._get_save_image_name(output_dir, image_path) logger.info("Detection bbox results save in {}".format( save_name)) image.save(save_name, quality=95) start = end def _get_save_image_name(self, output_dir, image_path): """ Get save image name from source image path. """ if not os.path.exists(output_dir): os.makedirs(output_dir) image_name = os.path.split(image_path)[-1] name, ext = os.path.splitext(image_name) return os.path.join(output_dir, "{}".format(name)) + ext def export(self, output_dir='output_inference'): self.model.eval() model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0] save_dir = os.path.join(output_dir, model_name) if not os.path.exists(save_dir): os.makedirs(save_dir) image_shape = None if 'inputs_def' in self.cfg['TestReader']: inputs_def = self.cfg['TestReader']['inputs_def'] image_shape = inputs_def.get('image_shape', None) # set image_shape=[3, -1, -1] as default if image_shape is None: image_shape = [3, -1, -1] self.model.eval() # Save infer cfg _dump_infer_config(self.cfg, os.path.join(save_dir, 'infer_cfg.yml'), image_shape, self.model) input_spec = [{ "image": InputSpec( shape=[None] + image_shape, name='image'), "im_shape": InputSpec( shape=[None, 2], name='im_shape'), "scale_factor": InputSpec( shape=[None, 2], name='scale_factor') }] # dy2st and save model if self.slim is None or self.cfg['slim'] != 'QAT': static_model = paddle.jit.to_static( self.model, input_spec=input_spec) # NOTE: dy2st do not pruned program, but jit.save will prune program # input spec, prune input spec here and save with pruned input spec pruned_input_spec = self._prune_input_spec( input_spec, static_model.forward.main_program, static_model.forward.outputs) paddle.jit.save( static_model, os.path.join(save_dir, 'model'), input_spec=pruned_input_spec) logger.info("Export model and saved in {}".format(save_dir)) else: self.slim.save_quantized_model( self.model, os.path.join(save_dir, 'model'), input_spec=input_spec) def _prune_input_spec(self, input_spec, program, targets): # try to prune static program to figure out pruned input spec # so we perform following operations in static mode paddle.enable_static() pruned_input_spec = [{}] program = program.clone() program = program._prune(targets=targets) global_block = program.global_block() for name, spec in input_spec[0].items(): try: v = global_block.var(name) pruned_input_spec[0][name] = spec except Exception: pass paddle.disable_static() return pruned_input_spec