_BASE_: [ '../datasets/coco_detection.yml', '../runtime.yml', '_base_/picodet_v2.yml', '_base_/optimizer_300e.yml', ] pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams weights: output/picodet_s_416_coco/best_model find_unused_parameters: True keep_best_weight: True use_ema: True epoch: 300 snapshot_epoch: 10 PicoDet: backbone: LCNet neck: CSPPAN head: PicoHeadV2 LCNet: scale: 0.75 feature_maps: [3, 4, 5] act: relu6 CSPPAN: out_channels: 96 use_depthwise: True num_csp_blocks: 1 num_features: 4 act: relu6 PicoHeadV2: conv_feat: name: PicoFeat feat_in: 96 feat_out: 96 num_convs: 4 num_fpn_stride: 4 norm_type: bn share_cls_reg: True use_se: True act: relu6 feat_in_chan: 96 act: relu6 LearningRate: base_lr: 0.2 schedulers: - !CosineDecay max_epochs: 300 min_lr_ratio: 0.08 last_plateau_epochs: 30 - !ExpWarmup epochs: 2 worker_num: 6 eval_height: &eval_height 416 eval_width: &eval_width 416 eval_size: &eval_size [*eval_height, *eval_width] TrainReader: sample_transforms: - Decode: {} - Mosaic: prob: 0.6 input_dim: [640, 640] degrees: [-10, 10] scale: [0.1, 2.0] shear: [-2, 2] translate: [-0.1, 0.1] enable_mixup: True - AugmentHSV: {is_bgr: False, hgain: 5, sgain: 30, vgain: 30} - RandomFlip: {prob: 0.5} batch_transforms: - BatchRandomResize: {target_size: [320, 352, 384, 416, 448, 480, 512], random_size: True, random_interp: True, keep_ratio: False} - NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True} - Permute: {} - PadGT: {} batch_size: 40 shuffle: true drop_last: true mosaic_epoch: 180 EvalReader: sample_transforms: - Decode: {} - Resize: {interp: 2, target_size: *eval_size, keep_ratio: False} - NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: 32} batch_size: 8 shuffle: false TestReader: inputs_def: image_shape: [1, 3, *eval_height, *eval_width] sample_transforms: - Decode: {} - Resize: {interp: 2, target_size: *eval_size, keep_ratio: False} - NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True} - Permute: {} batch_size: 1