# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import os import numpy as np import paddle.fluid as fluid import paddle.fluid.profiler as profiler import paddle.fluid.layers as layers import paddle.fluid.core as core class TestNVProf(unittest.TestCase): def test_nvprof(self): if not fluid.core.is_compiled_with_cuda(): return epoc = 8 dshape = [4, 3, 28, 28] data = layers.data(name='data', shape=[3, 28, 28], dtype='float32') conv = layers.conv2d(data, 20, 3, stride=[1, 1], padding=[1, 1]) place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) output_file = 'cuda_profiler.txt' with profiler.cuda_profiler(output_file, 'csv') as nvprof: for i in range(epoc): input = np.random.random(dshape).astype('float32') exe.run(fluid.default_main_program(), feed={'data': input}) os.remove(output_file) if __name__ == '__main__': unittest.main()