// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include #include "paddle/fluid/framework/naive_executor.h" #include "paddle/fluid/inference/analysis/analyzer.h" #include "paddle/fluid/inference/api/analysis_predictor.h" #include "paddle/fluid/inference/api/api_impl.h" #include "paddle/fluid/inference/api/details/reset_tensor_array.h" #include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/string/printf.h" #ifdef PADDLE_WITH_TESTING #include #include #endif namespace paddle { /* * Map variable name to tensor of scaling factors scaling it to MAX=1.0. * bool denotes whether quantization of the variable should be done to unsigned * type. */ using VarQuantScale = std::unordered_map>; class AnalysisPredictor::MkldnnQuantizer { public: explicit MkldnnQuantizer( AnalysisPredictor& predictor, // NOLINT const std::shared_ptr& qconfig) : predictor_(predictor), qconfig_(qconfig) {} // Execute full quantization procedure. bool Quantize(); #if PADDLE_WITH_TESTING friend class MkldnnQuantizerTest; #endif private: // Run single warmup iteration bool RunWarmup() const; // Gather data from variables and calculate scales for them. bool CalculateScales(); // Calculate a scale for tensor based on ScaleAlgo rules. void CalculateSingleScale(const std::string& op_name, const std::string& conn_name, const std::string& var_name, const framework::LoDTensor& var_tensor, bool is_unsigned); void PrepareArgument() const; bool RunQuantizePasses() const; std::vector ExpandQuantizedBins(std::vector quantized_bins, std::vector reference_bins) const; // Using the KL-divergence method get the most precise scaling factor. std::pair GetKLScalingFactor( const framework::LoDTensor& var_tensor, bool is_unsigned) const; std::pair GetMaxChScalingFactor( const framework::LoDTensor& var_tensor, bool is_unsigned) const; std::pair GetMaxScalingFactor( const framework::LoDTensor& var_tensor, bool is_unsigned) const; // Returns histogram and bin width std::pair, float> Histogram( const framework::LoDTensor& var_tensor, float min_val, float max_val, size_t num_bins = 2048) const; // Calculate the entropy. float SafeEntropy(std::vector reference_distr_P, int P_sum, std::vector candidate_distr_Q, int Q_sum) const; private: AnalysisPredictor& predictor_; const std::shared_ptr qconfig_; // A map: variable name -> scale VarQuantScale scales_; }; } // namespace paddle