# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register, create from .meta_arch import BaseArch from .. import layers as L __all__ = ['METRO_Body'] def orthographic_projection(X, camera): """Perform orthographic projection of 3D points X using the camera parameters Args: X: size = [B, N, 3] camera: size = [B, 3] Returns: Projected 2D points -- size = [B, N, 2] """ camera = camera.reshape((-1, 1, 3)) X_trans = X[:, :, :2] + camera[:, :, 1:] shape = paddle.shape(X_trans) X_2d = (camera[:, :, 0] * X_trans.reshape((shape[0], -1))).reshape(shape) return X_2d @register class METRO_Body(BaseArch): __category__ = 'architecture' __inject__ = ['loss'] def __init__( self, num_joints, backbone='HRNet', trans_encoder='', loss='Pose3DLoss', ): """ Modified from METRO network, see https://arxiv.org/abs/2012.09760 Args: backbone (nn.Layer): backbone instance """ super(METRO_Body, self).__init__() self.num_joints = num_joints self.backbone = backbone self.loss = loss self.deploy = False self.trans_encoder = trans_encoder self.conv_learn_tokens = paddle.nn.Conv1D(49, num_joints + 10, 1) self.cam_param_fc = paddle.nn.Linear(3, 2) @classmethod def from_config(cls, cfg, *args, **kwargs): # backbone backbone = create(cfg['backbone']) trans_encoder = create(cfg['trans_encoder']) return {'backbone': backbone, 'trans_encoder': trans_encoder} def _forward(self): batch_size = self.inputs['image'].shape[0] image_feat = self.backbone(self.inputs) image_feat_flatten = image_feat.reshape((batch_size, 2048, 49)) image_feat_flatten = image_feat_flatten.transpose(perm=(0, 2, 1)) # and apply a conv layer to learn image token for each 3d joint/vertex position features = self.conv_learn_tokens(image_feat_flatten) # (B, J, C) if self.training: # apply mask vertex/joint modeling # meta_masks is a tensor of all the masks, randomly generated in dataloader # we pre-define a [MASK] token, which is a floating-value vector with 0.01s meta_masks = self.inputs['mjm_mask'].expand((-1, -1, 2048)) constant_tensor = paddle.ones_like(features) * 0.01 features = features * meta_masks + constant_tensor * (1 - meta_masks ) pred_out = self.trans_encoder(features) pred_3d_joints = pred_out[:, :self.num_joints, :] cam_features = pred_out[:, self.num_joints:, :] # learn camera parameters pred_2d_joints = self.cam_param_fc(cam_features) return pred_3d_joints, pred_2d_joints def get_loss(self): preds_3d, preds_2d = self._forward() loss = self.loss(preds_3d, preds_2d, self.inputs) output = {'loss': loss} return output def get_pred(self): preds_3d, preds_2d = self._forward() outputs = {'pose3d': preds_3d, 'pose2d': preds_2d} return outputs