use_gpu: true log_iter: 10 save_dir: output snapshot_epoch: 10 weights: output/higherhrnet_hrnet_v1_512/model_final epoch: 300 num_joints: &num_joints 17 flip_perm: &flip_perm [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] input_size: &input_size 512 hm_size: &hm_size 128 hm_size_2x: &hm_size_2x 256 max_people: &max_people 30 metric: COCO IouType: keypoints num_classes: 1 #####model architecture: HigherHRNet pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/Trunc_HRNet_W32_C_pretrained.pdparams HigherHRNet: backbone: HRNet hrhrnet_head: HrHRNetHead post_process: HrHRNetPostProcess flip_perm: *flip_perm eval_flip: true HRNet: width: &width 32 freeze_at: -1 freeze_norm: false return_idx: [0] HrHRNetHead: num_joints: *num_joints width: *width loss: HrHRNetLoss swahr: true HrHRNetLoss: num_joints: *num_joints swahr: true #####optimizer LearningRate: base_lr: 0.001 schedulers: - !PiecewiseDecay milestones: [200, 260] gamma: 0.1 - !LinearWarmup start_factor: 0.001 steps: 1000 OptimizerBuilder: optimizer: type: Adam regularizer: #####data TrainDataset: !KeypointBottomUpCocoDataset image_dir: train2017 anno_path: annotations/person_keypoints_train2017.json dataset_dir: dataset/coco num_joints: *num_joints EvalDataset: !KeypointBottomUpCocoDataset image_dir: val2017 anno_path: annotations/person_keypoints_val2017.json dataset_dir: dataset/coco num_joints: *num_joints test_mode: true TestDataset: !ImageFolder anno_path: dataset/coco/keypoint_imagelist.txt worker_num: 8 global_mean: &global_mean [0.485, 0.456, 0.406] global_std: &global_std [0.229, 0.224, 0.225] TrainReader: sample_transforms: - RandomAffine: max_degree: 30 scale: [0.75, 1.5] max_shift: 0.2 trainsize: *input_size hmsize: [*hm_size, *hm_size_2x] - KeyPointFlip: flip_prob: 0.5 flip_permutation: *flip_perm hmsize: [*hm_size, *hm_size_2x] - ToHeatmaps: num_joints: *num_joints hmsize: [*hm_size, *hm_size_2x] sigma: 2 - TagGenerate: num_joints: *num_joints max_people: *max_people - NormalizePermute: mean: *global_mean std: *global_std batch_size: 16 shuffle: true drop_last: true use_shared_memory: true EvalReader: sample_transforms: - EvalAffine: size: *input_size - NormalizeImage: mean: *global_mean std: *global_std is_scale: true - Permute: {} batch_size: 1 drop_empty: false TestReader: sample_transforms: - Decode: {} - EvalAffine: size: *input_size - NormalizeImage: mean: *global_mean std: *global_std is_scale: true - Permute: {} batch_size: 1