# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle import fluid from paddle.fluid.param_attr import ParamAttr from ppdet.core.workspace import register __all__ = ['BlazeNet'] @register class BlazeNet(object): """ BlazeFace, see https://arxiv.org/abs/1907.05047 Args: blaze_filters (list): number of filter for each blaze block double_blaze_filters (list): number of filter for each double_blaze block with_extra_blocks (bool): whether or not extra blocks should be added lite_edition (bool): whether or not is blazeface-lite use_5x5kernel (bool): whether or not filter size is 5x5 in depth-wise conv """ def __init__( self, blaze_filters=[[24, 24], [24, 24], [24, 48, 2], [48, 48], [48, 48]], double_blaze_filters=[[48, 24, 96, 2], [96, 24, 96], [96, 24, 96], [96, 24, 96, 2], [96, 24, 96], [96, 24, 96]], with_extra_blocks=True, lite_edition=False, use_5x5kernel=True): super(BlazeNet, self).__init__() self.blaze_filters = blaze_filters self.double_blaze_filters = double_blaze_filters self.with_extra_blocks = with_extra_blocks self.lite_edition = lite_edition self.use_5x5kernel = use_5x5kernel def __call__(self, input): if not self.lite_edition: conv1_num_filters = self.blaze_filters[0][0] conv = self._conv_norm( input=input, num_filters=conv1_num_filters, filter_size=3, stride=2, padding=1, act='relu', name="conv1") for k, v in enumerate(self.blaze_filters): assert len(v) in [2, 3], \ "blaze_filters {} not in [2, 3]" if len(v) == 2: conv = self.BlazeBlock( conv, v[0], v[1], use_5x5kernel=self.use_5x5kernel, name='blaze_{}'.format(k)) elif len(v) == 3: conv = self.BlazeBlock( conv, v[0], v[1], stride=v[2], use_5x5kernel=self.use_5x5kernel, name='blaze_{}'.format(k)) layers = [] for k, v in enumerate(self.double_blaze_filters): assert len(v) in [3, 4], \ "blaze_filters {} not in [3, 4]" if len(v) == 3: conv = self.BlazeBlock( conv, v[0], v[1], double_channels=v[2], use_5x5kernel=self.use_5x5kernel, name='double_blaze_{}'.format(k)) elif len(v) == 4: layers.append(conv) conv = self.BlazeBlock( conv, v[0], v[1], double_channels=v[2], stride=v[3], use_5x5kernel=self.use_5x5kernel, name='double_blaze_{}'.format(k)) layers.append(conv) if not self.with_extra_blocks: return layers[-1] return layers[-2], layers[-1] else: conv1 = self._conv_norm( input=input, num_filters=24, filter_size=5, stride=2, padding=2, act='relu', name="conv1") conv2 = self.Blaze_lite(conv1, 24, 24, 1, 'conv2') conv3 = self.Blaze_lite(conv2, 24, 28, 1, 'conv3') conv4 = self.Blaze_lite(conv3, 28, 32, 2, 'conv4') conv5 = self.Blaze_lite(conv4, 32, 36, 1, 'conv5') conv6 = self.Blaze_lite(conv5, 36, 42, 1, 'conv6') conv7 = self.Blaze_lite(conv6, 42, 48, 2, 'conv7') in_ch = 48 for i in range(5): conv7 = self.Blaze_lite(conv7, in_ch, in_ch + 8, 1, 'conv{}'.format(8 + i)) in_ch += 8 assert in_ch == 88 conv13 = self.Blaze_lite(conv7, 88, 96, 2, 'conv13') for i in range(4): conv13 = self.Blaze_lite(conv13, 96, 96, 1, 'conv{}'.format(14 + i)) return conv7, conv13 def BlazeBlock(self, input, in_channels, out_channels, double_channels=None, stride=1, use_5x5kernel=True, name=None): assert stride in [1, 2] use_pool = not stride == 1 use_double_block = double_channels is not None act = 'relu' if use_double_block else None if use_5x5kernel: conv_dw = self._conv_norm( input=input, filter_size=5, num_filters=in_channels, stride=stride, padding=2, num_groups=in_channels, use_cudnn=False, name=name + "1_dw") else: conv_dw_1 = self._conv_norm( input=input, filter_size=3, num_filters=in_channels, stride=1, padding=1, num_groups=in_channels, use_cudnn=False, name=name + "1_dw_1") conv_dw = self._conv_norm( input=conv_dw_1, filter_size=3, num_filters=in_channels, stride=stride, padding=1, num_groups=in_channels, use_cudnn=False, name=name + "1_dw_2") conv_pw = self._conv_norm( input=conv_dw, filter_size=1, num_filters=out_channels, stride=1, padding=0, act=act, name=name + "1_sep") if use_double_block: if use_5x5kernel: conv_dw = self._conv_norm( input=conv_pw, filter_size=5, num_filters=out_channels, stride=1, padding=2, use_cudnn=False, name=name + "2_dw") else: conv_dw_1 = self._conv_norm( input=conv_pw, filter_size=3, num_filters=out_channels, stride=1, padding=1, num_groups=out_channels, use_cudnn=False, name=name + "2_dw_1") conv_dw = self._conv_norm( input=conv_dw_1, filter_size=3, num_filters=out_channels, stride=1, padding=1, num_groups=out_channels, use_cudnn=False, name=name + "2_dw_2") conv_pw = self._conv_norm( input=conv_dw, filter_size=1, num_filters=double_channels, stride=1, padding=0, name=name + "2_sep") # shortcut if use_pool: shortcut_channel = double_channels or out_channels shortcut_pool = self._pooling_block(input, stride, stride) channel_pad = self._conv_norm( input=shortcut_pool, filter_size=1, num_filters=shortcut_channel, stride=1, padding=0, name="shortcut" + name) return fluid.layers.elementwise_add( x=channel_pad, y=conv_pw, act='relu') return fluid.layers.elementwise_add(x=input, y=conv_pw, act='relu') def Blaze_lite(self, input, in_channels, out_channels, stride=1, name=None): assert stride in [1, 2] use_pool = not stride == 1 ues_pad = not in_channels == out_channels conv_dw = self._conv_norm( input=input, filter_size=3, num_filters=in_channels, stride=stride, padding=1, num_groups=in_channels, name=name + "_dw") conv_pw = self._conv_norm( input=conv_dw, filter_size=1, num_filters=out_channels, stride=1, padding=0, name=name + "_sep") if use_pool: shortcut_pool = self._pooling_block(input, stride, stride) if ues_pad: conv_pad = shortcut_pool if use_pool else input channel_pad = self._conv_norm( input=conv_pad, filter_size=1, num_filters=out_channels, stride=1, padding=0, name="shortcut" + name) return fluid.layers.elementwise_add( x=channel_pad, y=conv_pw, act='relu') return fluid.layers.elementwise_add(x=input, y=conv_pw, act='relu') def _conv_norm( self, input, filter_size, num_filters, stride, padding, num_groups=1, act='relu', # None use_cudnn=True, name=None): parameter_attr = ParamAttr( learning_rate=0.1, initializer=fluid.initializer.MSRA(), name=name + "_weights") conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, groups=num_groups, act=None, use_cudnn=use_cudnn, param_attr=parameter_attr, bias_attr=False) return fluid.layers.batch_norm(input=conv, act=act) def _pooling_block(self, conv, pool_size, pool_stride, pool_padding=0, ceil_mode=True): pool = fluid.layers.pool2d( input=conv, pool_size=pool_size, pool_type='max', pool_stride=pool_stride, pool_padding=pool_padding, ceil_mode=ceil_mode) return pool