# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os, sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) if parent_path not in sys.path: sys.path.append(parent_path) # ignore warning log import warnings warnings.filterwarnings('ignore') import random import numpy as np import paddle from paddle.distributed import ParallelEnv from ppdet.core.workspace import load_config, merge_config, create from ppdet.utils.checkpoint import load_weight, load_pretrain_weight from ppdet.engine import Trainer, init_parallel_env, set_random_seed, init_fleet_env import ppdet.utils.cli as cli import ppdet.utils.check as check from ppdet.utils.logger import setup_logger logger = setup_logger('train') def parse_args(): parser = cli.ArgsParser() parser.add_argument( "--weight_type", default='pretrain', type=str, help="Loading Checkpoints only support 'pretrain', 'finetune', 'resume'." ) parser.add_argument( "--eval", action='store_true', default=False, help="Whether to perform evaluation in train") parser.add_argument( "--slim_config", default=None, type=str, help="Configuration file of slim method.") parser.add_argument( "--enable_ce", type=bool, default=False, help="If set True, enable continuous evaluation job." "This flag is only used for internal test.") parser.add_argument( "--fp16", action='store_true', default=False, help="Enable mixed precision training.") parser.add_argument( "--fleet", action='store_true', default=False, help="Use fleet or not") args = parser.parse_args() return args def run(FLAGS, cfg): # init fleet environment if cfg.fleet: init_fleet_env() else: # init parallel environment if nranks > 1 init_parallel_env() if FLAGS.enable_ce: set_random_seed(0) # build trainer trainer = Trainer(cfg, mode='train') # load weights if not FLAGS.slim_config and 'pretrain_weights' in cfg and cfg.pretrain_weights: trainer.load_weights(cfg.pretrain_weights, FLAGS.weight_type) # training trainer.train(FLAGS.eval) def main(): FLAGS = parse_args() cfg = load_config(FLAGS.config) cfg['fp16'] = FLAGS.fp16 cfg['fleet'] = FLAGS.fleet merge_config(FLAGS.opt) if FLAGS.slim_config: slim_cfg = load_config(FLAGS.slim_config) merge_config(slim_cfg) if 'weight_type' not in cfg: cfg.weight_type = FLAGS.weight_type check.check_config(cfg) check.check_gpu(cfg.use_gpu) check.check_version() place = 'gpu:{}'.format(ParallelEnv().dev_id) if cfg.use_gpu else 'cpu' place = paddle.set_device(place) run(FLAGS, cfg) if __name__ == "__main__": main()