import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register from ppdet.modeling.bbox_utils import nonempty_bbox from . import ops @register class BBoxPostProcess(object): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=80, decode=None, nms=None): super(BBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms def __call__(self, head_out, rois, im_shape, scale_factor): """ Decode the bbox and do NMS if needed. Returns: bbox_pred(Tensor): The output is the prediction with shape [N, 6] including labels, scores and bboxes. The size of bboxes are corresponding to the input image and the bboxes may be used in other brunch. bbox_num(Tensor): The number of prediction of each batch with shape [N, 6]. """ if self.nms is not None: bboxes, score = self.decode(head_out, rois, im_shape, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes) else: bbox_pred, bbox_num = self.decode(head_out, rois, im_shape, scale_factor) if bbox_pred.shape[0] == 0: bbox_pred = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) return bbox_pred, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Args: bboxes(Tensor): The output of __call__ with shape [N, 6] Returns: bbox_pred(Tensor): The output is the prediction with shape [N, 6] including labels, scores and bboxes. The size of bboxes are corresponding to the original image. """ origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([scale_x, scale_y, scale_x, scale_y]) expand_scale = paddle.expand(scale, [bbox_num[i], 4]) # TODO: Because paddle.expand transform error when dygraph # to static, use reshape to avoid mistakes. expand_scale = paddle.reshape(expand_scale, [bbox_num[i], 4]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) self.origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 6], label, score, bbox pred_label = bboxes[:, 0:1] pred_score = bboxes[:, 1:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image scaled_bbox = pred_bbox / scale_factor_list origin_h = self.origin_shape_list[:, 0] origin_w = self.origin_shape_list[:, 1] zeros = paddle.zeros_like(origin_h) # clip bbox to [0, original_size] x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros) y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros) x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros) y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1) # filter empty bbox keep_mask = nonempty_bbox(pred_bbox, return_mask=True) keep_mask = paddle.unsqueeze(keep_mask, [1]) pred_label = paddle.where(keep_mask, pred_label, paddle.ones_like(pred_label) * -1) pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1) return pred_result def get_origin_shape(self, ): return self.origin_shape_list @register class MaskPostProcess(object): def __init__(self, binary_thresh=0.5): super(MaskPostProcess, self).__init__() self.binary_thresh = binary_thresh def paste_mask(self, masks, boxes, im_h, im_w): # paste each mask on image x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1) masks = paddle.unsqueeze(masks, [0, 1]) img_y = paddle.arange(0, im_h, dtype='float32') + 0.5 img_x = paddle.arange(0, im_w, dtype='float32') + 0.5 img_y = (img_y - y0) / (y1 - y0) * 2 - 1 img_x = (img_x - x0) / (x1 - x0) * 2 - 1 img_x = paddle.unsqueeze(img_x, [1]) img_y = paddle.unsqueeze(img_y, [2]) N = boxes.shape[0] gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]]) gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]]) # TODO: Because paddle.expand transform error when dygraph # to static, use reshape to avoid mistakes. gx = paddle.reshape(gx, [N, img_y.shape[1], img_x.shape[2]]) gy = paddle.reshape(gy, [N, img_y.shape[1], img_x.shape[2]]) grid = paddle.stack([gx, gy], axis=3) img_masks = F.grid_sample(masks, grid, align_corners=False) return img_masks[:, 0] def __call__(self, mask_out, bboxes, bbox_num, origin_shape): """ Paste the mask prediction to the original image. """ num_mask = mask_out.shape[0] origin_shape = paddle.cast(origin_shape, 'int32') # TODO: support bs > 1 and mask output dtype is bool pred_result = paddle.zeros( [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32') if bboxes.shape[0] == 0: return pred_result # TODO: optimize chunk paste pred_result = [] for i in range(bboxes.shape[0]): im_h, im_w = origin_shape[i][0], origin_shape[i][1] pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h, im_w) pred_mask = pred_mask >= self.binary_thresh pred_mask = paddle.cast(pred_mask, 'int32') pred_result.append(pred_mask) pred_result = paddle.concat(pred_result) return pred_result @register class FCOSPostProcess(object): __inject__ = ['decode', 'nms'] def __init__(self, decode=None, nms=None): super(FCOSPostProcess, self).__init__() self.decode = decode self.nms = nms def __call__(self, fcos_head_outs, scale_factor): locations, cls_logits, bboxes_reg, centerness = fcos_head_outs bboxes, score = self.decode(locations, cls_logits, bboxes_reg, centerness, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score) return bbox_pred, bbox_num