Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
fef2faa7
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fef2faa7
编写于
11月 05, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
limit CUDA kernel parallel threads max number to 4096. test=develop
上级
34bfae24
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
34 addition
and
19 deletion
+34
-19
paddle/fluid/operators/interpolate_op.cu
paddle/fluid/operators/interpolate_op.cu
+18
-12
python/paddle/fluid/tests/unittests/test_interpolate_op.py
python/paddle/fluid/tests/unittests/test_interpolate_op.py
+16
-7
未找到文件。
paddle/fluid/operators/interpolate_op.cu
浏览文件 @
fef2faa7
...
...
@@ -26,7 +26,8 @@ __global__ void KeNearestNeighborInterpFw(
const
size_t
num_channels
,
const
float
ratio_h
,
const
float
ratio_w
)
{
int
nthreads
=
output_h
*
output_w
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
tid
<
nthreads
)
{
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
for
(;
tid
<
nthreads
;
tid
+=
stride
)
{
int
out_id_h
=
tid
/
output_w
;
int
out_id_w
=
tid
%
output_w
;
int
in_img_size
=
input_w
/
num_channels
;
...
...
@@ -52,7 +53,8 @@ __global__ void KeNearestNeighborInterpBw(
const
size_t
num_channels
,
const
float
ratio_h
,
const
float
ratio_w
)
{
int
nthreads
=
output_h
*
output_w
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
tid
<
nthreads
)
{
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
for
(;
tid
<
nthreads
;
tid
+=
stride
)
{
int
out_id_h
=
tid
/
output_w
;
int
out_id_w
=
tid
%
output_w
;
int
in_img_size
=
input_w
/
num_channels
;
...
...
@@ -80,7 +82,8 @@ __global__ void KeBilinearInterpFw(
const
size_t
num_channels
,
const
float
ratio_h
,
const
float
ratio_w
)
{
int
nthreads
=
output_h
*
output_w
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
tid
<
nthreads
)
{
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
for
(;
tid
<
nthreads
;
tid
+=
stride
)
{
int
out_id_h
=
tid
/
output_w
;
int
out_id_w
=
tid
%
output_w
;
int
in_img_size
=
input_w
/
num_channels
;
...
...
@@ -118,7 +121,8 @@ __global__ void KeBilinearInterpBw(
const
size_t
num_channels
,
const
T
ratio_h
,
const
T
ratio_w
)
{
int
nthreads
=
output_h
*
output_w
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
tid
<
nthreads
)
{
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
for
(;
tid
<
nthreads
;
tid
+=
stride
)
{
int
out_id_h
=
tid
/
output_w
;
int
out_id_w
=
tid
%
output_w
;
int
in_img_size
=
input_w
/
num_channels
;
...
...
@@ -194,17 +198,18 @@ class InterpolateOpCUDAKernel : public framework::OpKernel<T> {
return
;
}
int
threadNum
=
n
*
out_chw
;
int
blocks
=
(
threadNum
+
1024
-
1
)
/
1024
;
int
pixelNum
=
n
*
out_chw
;
int
grid_dim
=
(
pixelNum
+
512
-
1
)
/
512
;
grid_dim
=
grid_dim
>
8
?
8
:
grid_dim
;
if
(
"nearest"
==
interp_method
)
{
KeNearestNeighborInterpFw
<
T
><<<
blocks
,
1024
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
T
><<<
grid_dim
,
512
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_data
,
out_h
,
out_w
,
n
,
out_chw
,
c
,
ratio_h
,
ratio_w
);
}
else
if
(
"bilinear"
==
interp_method
)
{
KeBilinearInterpFw
<
T
><<<
blocks
,
1024
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
T
><<<
grid_dim
,
512
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_data
,
out_h
,
out_w
,
n
,
out_chw
,
c
,
ratio_h
,
ratio_w
);
}
...
...
@@ -257,17 +262,18 @@ class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> {
return
;
}
int
threadNum
=
n
*
out_chw
;
int
blocks
=
(
threadNum
+
1024
-
1
)
/
1024
;
int
pixelNum
=
n
*
out_chw
;
int
grid_dim
=
(
pixelNum
+
512
-
1
)
/
512
;
grid_dim
=
grid_dim
>
8
?
8
:
grid_dim
;
if
(
"nearest"
==
interp_method
)
{
KeNearestNeighborInterpBw
<
T
><<<
blocks
,
1024
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
T
><<<
grid_dim
,
512
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_grad_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_grad_data
,
out_h
,
out_w
,
n
,
out_chw
,
c
,
ratio_h
,
ratio_w
);
}
else
if
(
"bilinear"
==
interp_method
)
{
KeBilinearInterpBw
<
T
><<<
blocks
,
1024
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
T
><<<
grid_dim
,
512
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_grad_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_grad_data
,
out_h
,
out_w
,
n
,
out_chw
,
c
,
ratio_h
,
ratio_w
);
}
...
...
python/paddle/fluid/tests/unittests/test_interpolate_op.py
浏览文件 @
fef2faa7
...
...
@@ -167,13 +167,13 @@ class TestBilinearInterpCase6(TestInterpolateOp):
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
#
class TestBilinearInterpBigScale(TestInterpolateOp):
#
def init_test_case(self):
#
self.interp_method = 'bilinear'
# self.input_shape = [32, 16, 128, 64
]
# self.out_h = 2
00
# self.out_w = 10
0
# self.out_size = np.array([201, 10
1]).astype('int32')
class
TestBilinearInterpBigScale
(
TestInterpolateOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
4
,
4
,
64
,
32
]
self
.
out_h
=
1
00
self
.
out_w
=
5
0
self
.
out_size
=
np
.
array
([
101
,
5
1
]).
astype
(
'int32'
)
class
TestInterpolateOpUint8
(
OpTest
):
...
...
@@ -273,6 +273,15 @@ class TestNearestNeighborInterpCase6(TestInterpolateOp):
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
class
TestNearestNeighborInterpBigScale
(
TestInterpolateOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
4
,
4
,
64
,
32
]
self
.
out_h
=
100
self
.
out_w
=
50
self
.
out_size
=
np
.
array
([
101
,
51
]).
astype
(
'int32'
)
class
TestNearestNeighborInterpCase1Uint8
(
TestInterpolateOpUint8
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录