Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
fec6f809
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
fec6f809
编写于
9月 21, 2016
作者:
X
xuwei06
提交者:
wangyang59
11月 30, 2016
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Skeleton for Generative Adverserial Nets
上级
7105962f
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
279 addition
and
18 deletion
+279
-18
demo/gan/gan_conf.py
demo/gan/gan_conf.py
+86
-0
demo/gan/gan_trainer.py
demo/gan/gan_trainer.py
+141
-0
paddle/api/Arguments.cpp
paddle/api/Arguments.cpp
+15
-5
paddle/api/PaddleAPI.h
paddle/api/PaddleAPI.h
+17
-4
paddle/api/Parameter.cpp
paddle/api/Parameter.cpp
+2
-0
paddle/api/Vector.cpp
paddle/api/Vector.cpp
+7
-0
paddle/api/test/testVector.py
paddle/api/test/testVector.py
+3
-3
paddle/api/test/util.py
paddle/api/test/util.py
+3
-1
paddle/py_paddle/util.py
paddle/py_paddle/util.py
+5
-5
未找到文件。
demo/gan/gan_conf.py
0 → 100644
浏览文件 @
fec6f809
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer_config_helpers
import
*
mode
=
get_config_arg
(
"mode"
,
str
,
"generator"
)
assert
mode
in
set
([
"generator"
,
"discriminator"
,
"generator_training"
,
"discriminator_training"
])
is_generator_training
=
mode
==
"generator_training"
is_discriminator_training
=
mode
==
"discriminator_training"
is_generator
=
mode
==
"generator"
is_discriminator
=
mode
==
"discriminator"
print
(
'mode=%s'
%
mode
)
noise_dim
=
10
sample_dim
=
2
settings
(
batch_size
=
100
,
learning_rate
=
1e-2
,
learning_method
=
AdamOptimizer
()
)
def
discriminator
(
sample
):
"""
discriminator ouputs the probablity of a sample is from generator
or real data.
The output has two dimenstional: dimension 0 is the probablity
of the sample is from generator and dimension 1 is the probabblity
of the sample is from real data.
"""
param_attr
=
ParamAttr
(
is_static
=
is_generator_training
)
bias_attr
=
ParamAttr
(
is_static
=
is_generator_training
,
initial_mean
=
0
,
initial_std
=
0
)
return
fc_layer
(
input
=
sample
,
name
=
"dis_prob"
,
size
=
2
,
bias_attr
=
bias_attr
,
param_attr
=
param_attr
,
act
=
SoftmaxActivation
())
def
generator
(
noise
):
"""
generator generates a sample given noise
"""
param_attr
=
ParamAttr
(
is_static
=
is_discriminator_training
)
bias_attr
=
ParamAttr
(
is_static
=
is_discriminator_training
,
initial_mean
=
0
,
initial_std
=
0
)
return
fc_layer
(
input
=
noise
,
name
=
"gen_layer1"
,
size
=
sample_dim
,
bias_attr
=
bias_attr
,
param_attr
=
param_attr
,
act
=
LinearActivation
())
if
is_generator_training
:
noise
=
data_layer
(
name
=
"noise"
,
size
=
noise_dim
)
sample
=
generator
(
noise
)
if
is_discriminator_training
:
sample
=
data_layer
(
name
=
"sample"
,
size
=
sample_dim
)
if
is_generator_training
or
is_discriminator_training
:
label
=
data_layer
(
name
=
"label"
,
size
=
1
)
prob
=
discriminator
(
sample
)
cost
=
cross_entropy
(
input
=
prob
,
label
=
label
)
classification_error_evaluator
(
input
=
prob
,
label
=
label
,
name
=
mode
+
'_error'
)
outputs
(
cost
)
if
is_generator
:
noise
=
data_layer
(
name
=
"noise"
,
size
=
noise_dim
)
outputs
(
generator
(
noise
))
demo/gan/gan_trainer.py
0 → 100644
浏览文件 @
fec6f809
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
itertools
import
random
import
numpy
from
paddle.trainer.config_parser
import
parse_config
from
paddle.trainer.config_parser
import
logger
import
py_paddle.swig_paddle
as
api
from
py_paddle
import
DataProviderConverter
def
CHECK_EQ
(
a
,
b
):
assert
a
==
b
,
"a=%s, b=%s"
%
(
a
,
b
)
def
copy_shared_parameters
(
src
,
dst
):
src_params
=
[
src
.
getParameter
(
i
)
for
i
in
xrange
(
src
.
getParameterSize
())]
src_params
=
dict
([(
p
.
getName
(),
p
)
for
p
in
src_params
])
for
i
in
xrange
(
dst
.
getParameterSize
()):
dst_param
=
dst
.
getParameter
(
i
)
src_param
=
src_params
.
get
(
dst_param
.
getName
(),
None
)
if
src_param
is
None
:
continue
src_value
=
src_param
.
getBuf
(
api
.
PARAMETER_VALUE
)
dst_value
=
dst_param
.
getBuf
(
api
.
PARAMETER_VALUE
)
CHECK_EQ
(
len
(
src_value
),
len
(
dst_value
))
dst_value
.
copyFrom
(
src_value
)
dst_param
.
setValueUpdated
()
def
get_real_samples
(
batch_size
,
sample_dim
):
return
numpy
.
random
.
rand
(
batch_size
,
sample_dim
).
astype
(
'float32'
)
def
prepare_discriminator_data_batch
(
generator_machine
,
batch_size
,
noise_dim
,
sample_dim
):
gen_inputs
=
prepare_generator_data_batch
(
batch_size
/
2
,
noise_dim
)
gen_inputs
.
resize
(
1
)
gen_outputs
=
api
.
Arguments
.
createArguments
(
0
)
generator_machine
.
forward
(
gen_inputs
,
gen_outputs
,
api
.
PASS_TEST
)
fake_samples
=
gen_outputs
.
getSlotValue
(
0
).
copyToNumpyMat
()
real_samples
=
get_real_samples
(
batch_size
/
2
,
sample_dim
)
all_samples
=
numpy
.
concatenate
((
fake_samples
,
real_samples
),
0
)
all_labels
=
numpy
.
concatenate
(
(
numpy
.
zeros
(
batch_size
/
2
,
dtype
=
'int32'
),
numpy
.
ones
(
batch_size
/
2
,
dtype
=
'int32'
)),
0
)
inputs
=
api
.
Arguments
.
createArguments
(
2
)
inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
createCpuDenseFromNumpy
(
all_samples
))
inputs
.
setSlotIds
(
1
,
api
.
IVector
.
createCpuVectorFromNumpy
(
all_labels
))
return
inputs
def
prepare_generator_data_batch
(
batch_size
,
dim
):
noise
=
numpy
.
random
.
normal
(
size
=
(
batch_size
,
dim
)).
astype
(
'float32'
)
label
=
numpy
.
ones
(
batch_size
,
dtype
=
'int32'
)
inputs
=
api
.
Arguments
.
createArguments
(
2
)
inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
createCpuDenseFromNumpy
(
noise
))
inputs
.
setSlotIds
(
1
,
api
.
IVector
.
createCpuVectorFromNumpy
(
label
))
return
inputs
def
find
(
iterable
,
cond
):
for
item
in
iterable
:
if
cond
(
item
):
return
item
return
None
def
get_layer_size
(
model_conf
,
layer_name
):
layer_conf
=
find
(
model_conf
.
layers
,
lambda
x
:
x
.
name
==
layer_name
)
assert
layer_conf
is
not
None
,
"Cannot find '%s' layer"
%
layer_name
return
layer_conf
.
size
def
main
():
api
.
initPaddle
(
'--use_gpu=0'
,
'--dot_period=100'
,
'--log_period=10000'
)
gen_conf
=
parse_config
(
"gan_conf.py"
,
"mode=generator_training"
)
dis_conf
=
parse_config
(
"gan_conf.py"
,
"mode=discriminator_training"
)
generator_conf
=
parse_config
(
"gan_conf.py"
,
"mode=generator"
)
batch_size
=
dis_conf
.
opt_config
.
batch_size
noise_dim
=
get_layer_size
(
gen_conf
.
model_config
,
"noise"
)
sample_dim
=
get_layer_size
(
dis_conf
.
model_config
,
"sample"
)
# this create a gradient machine for discriminator
dis_training_machine
=
api
.
GradientMachine
.
createFromConfigProto
(
dis_conf
.
model_config
)
gen_training_machine
=
api
.
GradientMachine
.
createFromConfigProto
(
gen_conf
.
model_config
)
# generator_machine is used to generate data only, which is used for
# training discrinator
logger
.
info
(
str
(
generator_conf
.
model_config
))
generator_machine
=
api
.
GradientMachine
.
createFromConfigProto
(
generator_conf
.
model_config
)
dis_trainer
=
api
.
Trainer
.
create
(
dis_conf
,
dis_training_machine
)
gen_trainer
=
api
.
Trainer
.
create
(
gen_conf
,
gen_training_machine
)
dis_trainer
.
startTrain
()
gen_trainer
.
startTrain
()
for
train_pass
in
xrange
(
10
):
dis_trainer
.
startTrainPass
()
gen_trainer
.
startTrainPass
()
for
i
in
xrange
(
100000
):
copy_shared_parameters
(
gen_training_machine
,
generator_machine
)
copy_shared_parameters
(
gen_training_machine
,
dis_training_machine
)
data_batch
=
prepare_discriminator_data_batch
(
generator_machine
,
batch_size
,
noise_dim
,
sample_dim
)
dis_trainer
.
trainOneDataBatch
(
batch_size
,
data_batch
)
copy_shared_parameters
(
dis_training_machine
,
gen_training_machine
)
data_batch
=
prepare_generator_data_batch
(
batch_size
,
noise_dim
)
gen_trainer
.
trainOneDataBatch
(
batch_size
,
data_batch
)
dis_trainer
.
finishTrainPass
()
gen_trainer
.
finishTrainPass
()
dis_trainer
.
finishTrain
()
gen_trainer
.
finishTrain
()
if
__name__
==
'__main__'
:
main
()
paddle/api/Arguments.cpp
浏览文件 @
fec6f809
...
...
@@ -27,11 +27,6 @@ Arguments* Arguments::createArguments(size_t slotNum) {
void
Arguments
::
resize
(
size_t
slotNum
)
{
m
->
outputs
.
resize
(
slotNum
);
}
Matrix
*
Arguments
::
getSlotValue
(
size_t
idx
)
const
throw
(
RangeError
)
{
auto
&
a
=
m
->
getArg
(
idx
);
return
Matrix
::
createByPaddleMatrixPtr
(
&
a
.
value
);
}
Arguments
::
Arguments
()
:
m
(
new
ArgumentsPrivate
())
{}
Arguments
::~
Arguments
()
{
delete
m
;
}
...
...
@@ -43,6 +38,16 @@ Arguments* Arguments::createByPaddleArgumentVector(void* ptr) {
return
args
;
}
Matrix
*
Arguments
::
getSlotValue
(
size_t
idx
)
const
throw
(
RangeError
)
{
auto
&
a
=
m
->
getArg
(
idx
);
return
Matrix
::
createByPaddleMatrixPtr
(
&
a
.
value
);
}
Matrix
*
Arguments
::
getSlotGrad
(
size_t
idx
)
const
throw
(
RangeError
)
{
auto
&
a
=
m
->
getArg
(
idx
);
return
Matrix
::
createByPaddleMatrixPtr
(
&
a
.
grad
);
}
IVector
*
Arguments
::
getSlotIds
(
size_t
idx
)
const
throw
(
RangeError
)
{
auto
&
a
=
m
->
getArg
(
idx
);
return
IVector
::
createByPaddleVectorPtr
(
&
a
.
ids
);
...
...
@@ -58,6 +63,11 @@ void Arguments::setSlotValue(size_t idx, Matrix* mat) throw(RangeError) {
a
.
value
=
m
->
cast
<
paddle
::
Matrix
>
(
mat
->
getSharedPtr
());
}
void
Arguments
::
setSlotGrad
(
size_t
idx
,
Matrix
*
mat
)
throw
(
RangeError
)
{
auto
&
a
=
m
->
getArg
(
idx
);
a
.
grad
=
m
->
cast
<
paddle
::
Matrix
>
(
mat
->
getSharedPtr
());
}
void
Arguments
::
setSlotIn
(
size_t
idx
,
Matrix
*
mat
)
throw
(
RangeError
)
{
auto
&
a
=
m
->
getArg
(
idx
);
a
.
in
=
m
->
cast
<
paddle
::
Matrix
>
(
mat
->
getSharedPtr
());
...
...
paddle/api/PaddleAPI.h
浏览文件 @
fec6f809
...
...
@@ -156,12 +156,15 @@ public:
* @param dim1 dimension of data.
* @param dim2 dimension of data.
* @param copy true if copy into a new matrix, false will create
* matrix inplace.
* matrix inplace. copy = false should be used with extreme
* care because Matrix will share the memory with the given
* numpy array. If the numpy array object is no longer valid,
* the memory space will not be usable.
*/
static
Matrix
*
createCpuDenseFromNumpy
(
float
*
data
,
int
dim1
,
int
dim2
,
bool
copy
=
fals
e
);
bool
copy
=
tru
e
);
/// Create Gpu Dense Matrix from numpy matrix, dtype=float32
static
Matrix
*
createGpuDenseFromNumpy
(
float
*
data
,
int
dim1
,
int
dim2
);
...
...
@@ -271,11 +274,18 @@ public:
*/
static
Vector
*
createCpuVectorFromNumpy
(
float
*
data
,
int
dim
,
bool
copy
=
fals
e
);
bool
copy
=
tru
e
);
/// Create Gpu Vector from numpy array, which dtype=float32
static
Vector
*
createGpuVectorFromNumpy
(
float
*
data
,
int
dim
);
/**
* copy from another vector
* throw(RangeError) if size of src vector is different from size of this
* vector
*/
void
copyFrom
(
Vector
*
src
)
throw
(
RangeError
);
/// Cast to numpy array inplace.
void
toNumpyArrayInplace
(
float
**
view_data
,
int
*
dim1
)
throw
(
UnsupportError
);
...
...
@@ -339,7 +349,7 @@ public:
*/
static
IVector
*
createCpuVectorFromNumpy
(
int
*
data
,
int
dim
,
bool
copy
=
fals
e
);
bool
copy
=
tru
e
);
/**
* Create Gpu IVector from numpy array, which dtype=int32
*/
...
...
@@ -418,6 +428,7 @@ public:
* the param idx is the slot id
*/
Matrix
*
getSlotValue
(
size_t
idx
)
const
throw
(
RangeError
);
Matrix
*
getSlotGrad
(
size_t
idx
)
const
throw
(
RangeError
);
IVector
*
getSlotIds
(
size_t
idx
)
const
throw
(
RangeError
);
Matrix
*
getSlotIn
(
size_t
idx
)
const
throw
(
RangeError
);
IVector
*
getSlotSequenceStartPositions
(
size_t
idx
)
const
throw
(
RangeError
);
...
...
@@ -434,6 +445,7 @@ public:
* The other param is the input Matrix or vector.
*/
void
setSlotValue
(
size_t
idx
,
Matrix
*
mat
)
throw
(
RangeError
);
void
setSlotGrad
(
size_t
idx
,
Matrix
*
mat
)
throw
(
RangeError
);
void
setSlotIn
(
size_t
idx
,
Matrix
*
mat
)
throw
(
RangeError
);
void
setSlotIds
(
size_t
idx
,
IVector
*
vec
)
throw
(
RangeError
);
void
setSlotSequenceStartPositions
(
size_t
idx
,
...
...
@@ -535,6 +547,7 @@ public:
size_t
getID
()
const
;
ParameterConfig
*
getConfig
();
void
setValueUpdated
();
private:
static
Parameter
*
createFromRawPtr
(
void
*
ptr
);
...
...
paddle/api/Parameter.cpp
浏览文件 @
fec6f809
...
...
@@ -68,3 +68,5 @@ ParameterConfig* Parameter::getConfig() {
}
size_t
Parameter
::
getID
()
const
{
return
m
->
getPtr
()
->
getID
();
}
void
Parameter
::
setValueUpdated
()
{
m
->
getPtr
()
->
setValueUpdated
();
}
paddle/api/Vector.cpp
浏览文件 @
fec6f809
...
...
@@ -281,6 +281,13 @@ FloatArray Vector::getData() const {
}
}
void
Vector
::
copyFrom
(
Vector
*
src
)
throw
(
RangeError
)
{
if
(
src
->
m
->
vec
->
getSize
()
!=
m
->
vec
->
getSize
())
{
throw
RangeError
();
}
m
->
vec
->
copyFrom
(
*
src
->
m
->
vec
);
}
bool
Vector
::
isGpu
()
const
{
return
std
::
dynamic_pointer_cast
<
paddle
::
GpuVector
>
(
m
->
vec
)
!=
nullptr
;
}
...
...
paddle/api/test/testVector.py
浏览文件 @
fec6f809
...
...
@@ -43,7 +43,7 @@ class TestIVector(unittest.TestCase):
def
test_cpu_numpy
(
self
):
vec
=
np
.
array
([
1
,
3
,
4
,
65
,
78
,
1
,
4
],
dtype
=
"int32"
)
iv
=
swig_paddle
.
IVector
.
createCpuVectorFromNumpy
(
vec
)
iv
=
swig_paddle
.
IVector
.
createCpuVectorFromNumpy
(
vec
,
copy
=
False
)
self
.
assertEqual
(
vec
.
shape
[
0
],
int
(
iv
.
__len__
()))
vec
[
4
]
=
832
for
i
in
xrange
(
len
(
iv
)):
...
...
@@ -107,7 +107,7 @@ class TestVector(unittest.TestCase):
def
testCpuNumpy
(
self
):
numpy_arr
=
np
.
array
([
1.2
,
2.3
,
3.4
,
4.5
],
dtype
=
"float32"
)
vec
=
swig_paddle
.
Vector
.
createCpuVectorFromNumpy
(
numpy_arr
)
vec
=
swig_paddle
.
Vector
.
createCpuVectorFromNumpy
(
numpy_arr
,
copy
=
False
)
assert
isinstance
(
vec
,
swig_paddle
.
Vector
)
numpy_arr
[
0
]
=
0.1
for
n
,
v
in
zip
(
numpy_arr
,
vec
):
...
...
paddle/api/test/util.py
浏览文件 @
fec6f809
...
...
@@ -24,7 +24,9 @@ def doubleEqual(a, b):
def
__readFromFile
():
for
i
in
xrange
(
10002
):
yield
np
.
random
.
rand
(
784
),
random
.
randint
(
0
,
9
)
label
=
np
.
random
.
randint
(
0
,
9
)
sample
=
np
.
random
.
rand
(
784
)
+
0.1
*
label
yield
sample
,
label
def
loadMNISTTrainData
(
batch_size
=
100
):
...
...
paddle/py_paddle/util.py
浏览文件 @
fec6f809
...
...
@@ -559,10 +559,10 @@ def __monkey_patch_trainer__():
def
monkeypatches
():
patches
=
[
__monkeypatch_init_paddle__
,
__monkeypatch_gradient_machine__
,
__monkey_patch_protobuf_objects__
,
__monkey_patch_parameter
__
,
__monkey_patch_trainer__
]
patches
=
[
__monkeypatch_init_paddle__
,
__monkeypatch_gradient_machine__
,
__monkey_patch_protobuf_objects
__
,
__monkey_patch_parameter__
,
__monkey_patch_trainer__
]
for
patch
in
patches
:
patch
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录