From fd9b5c6107534c73c3e2d71385e22ebcf79f2994 Mon Sep 17 00:00:00 2001 From: pk_hk <82303451+pkhk-1@users.noreply.github.com> Date: Sat, 2 Apr 2022 22:36:22 +0800 Subject: [PATCH] openvino benchmark for picodet python (#5575) --- configs/picodet/README.md | 45 +++++---- configs/picodet/README_en.md | 46 +++++----- .../demo_openvino/python/README.md | 52 +++++++++++ .../python/openvino_benchmark.py | 91 +++++++++++++++++++ 4 files changed, 187 insertions(+), 47 deletions(-) create mode 100644 deploy/third_engine/demo_openvino/python/README.md create mode 100644 deploy/third_engine/demo_openvino/python/openvino_benchmark.py diff --git a/configs/picodet/README.md b/configs/picodet/README.md index acea78311..37cafaa14 100644 --- a/configs/picodet/README.md +++ b/configs/picodet/README.md @@ -35,20 +35,20 @@ PP-PicoDet模型有如下特点: | 模型 | 输入尺寸 | mAPval
0.5:0.95 | mAPval
0.5 | 参数量
(M) | FLOPS
(G) | 预测时延[CPU](#latency)
(ms) | 预测时延[Lite](#latency)
(ms) | 下载 | 配置文件 | | :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------: | :--------------------------------------- | -| PicoDet-XS | 320*320 | 23.5 | 36.1 | 0.70 | 0.67 | 10.9ms | 7.81ms | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_xs_320_coco_lcnet.yml) | -| PicoDet-XS | 416*416 | 26.2 | 39.3 | 0.70 | 1.13 | 15.4ms | 12.38ms | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_xs_416_coco_lcnet.yml) | -| PicoDet-S | 320*320 | 29.1 | 43.4 | 1.18 | 0.97 | 12.6ms | 9.56ms | [model](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_s_320_coco_lcnet.yml) | -| PicoDet-S | 416*416 | 32.5 | 47.6 | 1.18 | 1.65 | 17.2ms | 15.20ms | [model](https://paddledet.bj.bcebos.com/models/picodet_s_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_s_416_coco_lcnet.yml) | -| PicoDet-M | 320*320 | 34.4 | 50.0 | 3.46 | 2.57 | 14.5ms | 17.68ms | [model](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_m_320_coco_lcnet.yml) | -| PicoDet-M | 416*416 | 37.5 | 53.4 | 3.46 | 4.34 | 19.5ms | 28.39ms | [model](https://paddledet.bj.bcebos.com/models/picodet_m_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_m_416_coco_lcnet.yml) | -| PicoDet-L | 320*320 | 36.1 | 52.0 | 5.80 | 4.20 | 18.3ms | 25.21ms | [model](https://paddledet.bj.bcebos.com/models/picodet_l_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_l_320_coco_lcnet.yml) | -| PicoDet-L | 416*416 | 39.4 | 55.7 | 5.80 | 7.10 | 22.1ms | 42.23ms | [model](https://paddledet.bj.bcebos.com/models/picodet_l_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_l_416_coco_lcnet.yml) | -| PicoDet-L | 640*640 | 42.6 | 59.2 | 5.80 | 16.81 | 43.1ms | 108.1ms | [model](https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_640_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_l_640_coco_lcnet.yml) | +| PicoDet-XS | 320*320 | 23.5 | 36.1 | 0.70 | 0.67 | 3.9ms | 7.81ms | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_xs_320_coco_lcnet.yml) | +| PicoDet-XS | 416*416 | 26.2 | 39.3 | 0.70 | 1.13 | 6.1ms | 12.38ms | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_xs_416_coco_lcnet.yml) | +| PicoDet-S | 320*320 | 29.1 | 43.4 | 1.18 | 0.97 | 4.8ms | 9.56ms | [model](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_s_320_coco_lcnet.yml) | +| PicoDet-S | 416*416 | 32.5 | 47.6 | 1.18 | 1.65 | 6.6ms | 15.20ms | [model](https://paddledet.bj.bcebos.com/models/picodet_s_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_s_416_coco_lcnet.yml) | +| PicoDet-M | 320*320 | 34.4 | 50.0 | 3.46 | 2.57 | 8.2ms | 17.68ms | [model](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_m_320_coco_lcnet.yml) | +| PicoDet-M | 416*416 | 37.5 | 53.4 | 3.46 | 4.34 | 12.7ms | 28.39ms | [model](https://paddledet.bj.bcebos.com/models/picodet_m_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_m_416_coco_lcnet.yml) | +| PicoDet-L | 320*320 | 36.1 | 52.0 | 5.80 | 4.20 | 11.5ms | 25.21ms | [model](https://paddledet.bj.bcebos.com/models/picodet_l_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_l_320_coco_lcnet.yml) | +| PicoDet-L | 416*416 | 39.4 | 55.7 | 5.80 | 7.10 | 20.7ms | 42.23ms | [model](https://paddledet.bj.bcebos.com/models/picodet_l_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_l_416_coco_lcnet.yml) | +| PicoDet-L | 640*640 | 42.6 | 59.2 | 5.80 | 16.81 | 62.5ms | 108.1ms | [model](https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_640_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_l_640_coco_lcnet.yml) |
注意事项: -- 时延测试: 我们所有的模型都在英特尔至强6148的CPU(MKLDNN 10线程)和`骁龙865(4xA77+4xA55)`的ARM CPU上测试(4线程,FP16预测)。上面表格中标有`CPU`的是使用Paddle Inference库测试,标有`Lite`的是使用[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite)进行测试。 +- 时延测试: 我们所有的模型都在英特尔酷睿i7 10750H 的CPU 和`骁龙865(4xA77+4xA55)`的ARM CPU上测试(4线程,FP16预测)。上面表格中标有`CPU`的是使用OpenVINO测试,标有`Lite`的是使用[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite)进行测试。 - PicoDet在COCO train2017上训练,并且在COCO val2017上进行验证。使用4卡GPU训练,并且上表所有的预训练模型都是通过发布的默认配置训练得到。 - Benchmark测试:测试速度benchmark性能时,导出模型后处理不包含在网络中,需要设置`-o export.benchmark=True` 或手动修改[runtime.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/configs/runtime.yml#L12)。 @@ -141,7 +141,7 @@ python tools/infer.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \ cd PaddleDetection python tools/export_model.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \ -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams \ - --output_dir=inference_model + --output_dir=output_inference ``` - 如无需导出后处理,请指定:`-o export.benchmark=True`(如果-o已出现过,此处删掉-o)或者手动修改[runtime.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/configs/runtime.yml) 中相应字段。 @@ -162,9 +162,9 @@ pip install paddlelite ```shell # FP32 -paddle_lite_opt --model_dir=inference_model/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp32 +paddle_lite_opt --model_dir=output_inference/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp32 # FP16 -paddle_lite_opt --model_dir=inference_model/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp16 --enable_fp16=true +paddle_lite_opt --model_dir=output_inference/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp16 --enable_fp16=true ```
@@ -204,18 +204,17 @@ paddle2onnx --model_dir output_inference/picodet_s_320_coco_lcnet/ \ - 部署用的模型 -| 模型 | 输入尺寸 | ONNX | Paddle Lite(fp32) | Paddle Lite(fp16) | +| 模型 | 输入尺寸 | ONNX( w/o 后处理) | Paddle Lite(fp32) | Paddle Lite(fp16) | | :-------- | :--------: | :---------------------: | :----------------: | :----------------: | -| PicoDet-S | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320_fp16.tar) | -| PicoDet-S | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_fp16.tar) | -| PicoDet-M | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320_fp16.tar) | -| PicoDet-M | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416_fp16.tar) | -| PicoDet-L | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320_fp16.tar) | -| PicoDet-L | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_fp16.tar) | +| PicoDet-XS | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_fp16.tar) | +| PicoDet-XS | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_fp16.tar) | +| PicoDet-S | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320_fp16.tar) | +| PicoDet-S | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_fp16.tar) | +| PicoDet-M | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320_fp16.tar) | +| PicoDet-M | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416_fp16.tar) | +| PicoDet-L | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320_fp16.tar) | +| PicoDet-L | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_fp16.tar) | | PicoDet-L | 640*640 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640_fp16.tar) | -| PicoDet-Shufflenetv2 1x | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_shufflenetv2_1x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_shufflenetv2_1x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_shufflenetv2_1x_fp16.tar) | -| PicoDet-MobileNetv3-large 1x | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_mobilenetv3_large_1x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_mobilenetv3_large_1x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_mobilenetv3_large_1x_fp16.tar) | -| PicoDet-LCNet 1.5x | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_lcnet_1_5x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_lcnet_1_5x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_lcnet_1_5x_fp16.tar) | ### 部署 diff --git a/configs/picodet/README_en.md b/configs/picodet/README_en.md index 6b9be76c4..c1a806061 100644 --- a/configs/picodet/README_en.md +++ b/configs/picodet/README_en.md @@ -33,20 +33,20 @@ We release/2.4ed a series of lightweight models, named `PP-PicoDet`. Because of | Model | Input size | mAPval
0.5:0.95 | mAPval
0.5 | Params
(M) | FLOPS
(G) | Latency[CPU](#latency)
(ms) | Latency[Lite](#latency)
(ms) | Download | Config | | :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------: | :--------------------------------------- | -| PicoDet-XS | 320*320 | 23.5 | 36.1 | 0.70 | 0.67 | 10.9ms | 7.81ms | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_xs_320_coco_lcnet.yml) | -| PicoDet-XS | 416*416 | 26.2 | 39.3 | 0.70 | 1.13 | 15.4ms | 12.38ms | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_xs_416_coco_lcnet.yml) | -| PicoDet-S | 320*320 | 29.1 | 43.4 | 1.18 | 0.97 | 12.6ms | 9.56ms | [model](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_s_320_coco_lcnet.yml) | -| PicoDet-S | 416*416 | 32.5 | 47.6 | 1.18 | 1.65 | 17.2ms | 15.20ms | [model](https://paddledet.bj.bcebos.com/models/picodet_s_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_s_416_coco_lcnet.yml) | -| PicoDet-M | 320*320 | 34.4 | 50.0 | 3.46 | 2.57 | 14.5ms | 17.68ms | [model](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_m_320_coco_lcnet.yml) | -| PicoDet-M | 416*416 | 37.5 | 53.4 | 3.46 | 4.34 | 19.5ms | 28.39ms | [model](https://paddledet.bj.bcebos.com/models/picodet_m_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_m_416_coco_lcnet.yml) | -| PicoDet-L | 320*320 | 36.1 | 52.0 | 5.80 | 4.20 | 18.3ms | 25.21ms | [model](https://paddledet.bj.bcebos.com/models/picodet_l_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_l_320_coco_lcnet.yml) | -| PicoDet-L | 416*416 | 39.4 | 55.7 | 5.80 | 7.10 | 22.1ms | 42.23ms | [model](https://paddledet.bj.bcebos.com/models/picodet_l_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_l_416_coco_lcnet.yml) | -| PicoDet-L | 640*640 | 42.6 | 59.2 | 5.80 | 16.81 | 43.1ms | 108.1ms | [model](https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_640_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_l_640_coco_lcnet.yml) | +| PicoDet-XS | 320*320 | 23.5 | 36.1 | 0.70 | 0.67 | 3.9ms | 7.81ms | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_xs_320_coco_lcnet.yml) | +| PicoDet-XS | 416*416 | 26.2 | 39.3 | 0.70 | 1.13 | 6.1ms | 12.38ms | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_xs_416_coco_lcnet.yml) | +| PicoDet-S | 320*320 | 29.1 | 43.4 | 1.18 | 0.97 | 4.8ms | 9.56ms | [model](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_s_320_coco_lcnet.yml) | +| PicoDet-S | 416*416 | 32.5 | 47.6 | 1.18 | 1.65 | 6.6ms | 15.20ms | [model](https://paddledet.bj.bcebos.com/models/picodet_s_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_s_416_coco_lcnet.yml) | +| PicoDet-M | 320*320 | 34.4 | 50.0 | 3.46 | 2.57 | 8.2ms | 17.68ms | [model](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_m_320_coco_lcnet.yml) | +| PicoDet-M | 416*416 | 37.5 | 53.4 | 3.46 | 4.34 | 12.7ms | 28.39ms | [model](https://paddledet.bj.bcebos.com/models/picodet_m_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_m_416_coco_lcnet.yml) | +| PicoDet-L | 320*320 | 36.1 | 52.0 | 5.80 | 4.20 | 11.5ms | 25.21ms | [model](https://paddledet.bj.bcebos.com/models/picodet_l_320_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_l_320_coco_lcnet.yml) | +| PicoDet-L | 416*416 | 39.4 | 55.7 | 5.80 | 7.10 | 20.7ms | 42.23ms | [model](https://paddledet.bj.bcebos.com/models/picodet_l_416_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_l_416_coco_lcnet.yml) | +| PicoDet-L | 640*640 | 42.6 | 59.2 | 5.80 | 16.81 | 62.5ms | 108.1ms | [model](https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_640_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/picodet_l_640_coco_lcnet.yml) |
Table Notes: -- Latency: All our models test on `Intel-Xeon-Gold-6148` CPU with MKLDNN by 10 threads and `Qualcomm Snapdragon 865(4xA77+4xA55)` with 4 threads by arm8 and with FP16. In the above table, test CPU latency on Paddle-Inference and testing Mobile latency with `Lite`->[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite). +- Latency: All our models test on `Intel core i7 10750H` CPU with MKLDNN by 12 threads and `Qualcomm Snapdragon 865(4xA77+4xA55)` with 4 threads by arm8 and with FP16. In the above table, test CPU latency on Paddle-Inference and testing Mobile latency with `Lite`->[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite). - PicoDet is trained on COCO train2017 dataset and evaluated on COCO val2017. And PicoDet used 4 GPUs for training and all checkpoints are trained with default settings and hyperparameters. - Benchmark test: When testing the speed benchmark, the post-processing is not included in the exported model, you need to set `-o export.benchmark=True` or manually modify [runtime.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/configs/runtime.yml#L12). @@ -138,7 +138,7 @@ Detail also can refer to [Quick start guide](https://github.com/PaddlePaddle/Pad cd PaddleDetection python tools/export_model.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \ -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams \ - --output_dir=inference_model + --output_dir=output_inference ``` - If no post processing is required, please specify: `-o export.benchmark=True` (if -o has already appeared, delete -o here) or manually modify corresponding fields in [runtime.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/configs/runtime.yml). @@ -160,9 +160,9 @@ pip install paddlelite ```shell # FP32 -paddle_lite_opt --model_dir=inference_model/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp32 +paddle_lite_opt --model_dir=output_inference/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp32 # FP16 -paddle_lite_opt --model_dir=inference_model/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp16 --enable_fp16=true +paddle_lite_opt --model_dir=output_inference/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp16 --enable_fp16=true ```
@@ -202,19 +202,17 @@ paddle2onnx --model_dir output_inference/picodet_s_320_coco_lcnet/ \ - Deploy models -| Model | Input size | ONNX | Paddle Lite(fp32) | Paddle Lite(fp16) | +| Model | Input size | ONNX(w/o postprocess) | Paddle Lite(fp32) | Paddle Lite(fp16) | | :-------- | :--------: | :---------------------: | :----------------: | :----------------: | -| PicoDet-S | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320_fp16.tar) | -| PicoDet-S | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_fp16.tar) | -| PicoDet-M | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320_fp16.tar) | -| PicoDet-M | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416_fp16.tar) | -| PicoDet-L | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320_fp16.tar) | -| PicoDet-L | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_fp16.tar) | +| PicoDet-XS | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_fp16.tar) | +| PicoDet-XS | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_fp16.tar) | +| PicoDet-S | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320_fp16.tar) | +| PicoDet-S | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_fp16.tar) | +| PicoDet-M | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320_fp16.tar) | +| PicoDet-M | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416_fp16.tar) | +| PicoDet-L | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320_fp16.tar) | +| PicoDet-L | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_fp16.tar) | | PicoDet-L | 640*640 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640_fp16.tar) | -| PicoDet-Shufflenetv2 1x | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_shufflenetv2_1x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_shufflenetv2_1x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_shufflenetv2_1x_fp16.tar) | -| PicoDet-MobileNetv3-large 1x | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_mobilenetv3_large_1x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_mobilenetv3_large_1x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_mobilenetv3_large_1x_fp16.tar) | -| PicoDet-LCNet 1.5x | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_lcnet_1_5x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_lcnet_1_5x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_lcnet_1_5x_fp16.tar) | - ### Deploy diff --git a/deploy/third_engine/demo_openvino/python/README.md b/deploy/third_engine/demo_openvino/python/README.md new file mode 100644 index 000000000..74a0f1d32 --- /dev/null +++ b/deploy/third_engine/demo_openvino/python/README.md @@ -0,0 +1,52 @@ +# PicoDet OpenVINO Benchmark Demo + +本文件夹提供利用[Intel's OpenVINO Toolkit](https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html)进行PicoDet测速的Benchmark Demo + +## 安装 OpenVINO Toolkit + +前往 [OpenVINO HomePage](https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html),下载对应版本并安装。 + +本demo安装的是 OpenVINO 2022.1.0,可直接运行如下指令安装: +```shell +pip install openvino==2022.1.0 +``` + +详细安装步骤,可参考官网: https://docs.openvinotoolkit.org/latest/get_started_guides.html + +## 测试 + +准备测试模型,根据[PicoDet](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet)中模型导出与转换步骤,采用不包含后处理的方式导出模型(`-o export.benchmark=True` ),并生成待测试模型简化后的onnx(可在下文链接中直接下载) +在本目录下新建```out_onnxsim```文件夹: +```shell +mkdir out_onnxsim +``` +将导出的onnx模型放在该目录下 + +准备测试所用图片,本demo默认利用PaddleDetection/demo/[000000570688.jpg](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/demo/000000570688.jpg) + +在本目录下直接运行: + +```shell +#Windows +python '.\openvino_ppdet2 copy.py' --img_path ..\..\..\..\demo\000000570688.jpg --onnx_path out_onnxsim\picodet_xs_320_coco_lcnet.onnx --in_shape 320 +#Linux +python './openvino_ppdet2 copy.py' --img_path ../../../../demo/000000570688.jpg --onnx_path out_onnxsim/picodet_xs_320_coco_lcnet.onnx --in_shape 320 +``` +注意:```--in_shape```为对应模型输入size,默认为320 + + +## 结果 + +在英特尔酷睿i7 10750H 的CPU(MKLDNN 12线程)上测试结果如下: + +| 模型 | 输入尺寸 | ONNX | 预测时延[ms](#latency)| +| :-------- | :--------: | :---------------------: | :----------------: | +| PicoDet-XS | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_320_coco_lcnet.onnx) | 3.9ms | +| PicoDet-XS | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_416_coco_lcnet.onnx) | 6.1ms | +| PicoDet-S | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco_lcnet.onnx) | 4.8ms | +| PicoDet-S | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco_lcnet.onnx) | 6.6ms | +| PicoDet-M | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco_lcnet.onnx) | 8.2ms | +| PicoDet-M | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco_lcnet.onnx) | 12.7ms | +| PicoDet-L | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco_lcnet.onnx) | 11.5ms | +| PicoDet-L | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco_lcnet.onnx) | 20.7ms | +| PicoDet-L | 640*640 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_coco.onnx) | 62.5ms | diff --git a/deploy/third_engine/demo_openvino/python/openvino_benchmark.py b/deploy/third_engine/demo_openvino/python/openvino_benchmark.py new file mode 100644 index 000000000..b852b7581 --- /dev/null +++ b/deploy/third_engine/demo_openvino/python/openvino_benchmark.py @@ -0,0 +1,91 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import cv2 +import numpy as np +import time +import argparse +from openvino.runtime import Core + + +def image_preprocess_mobilenetv3(img_path, re_shape): + img = cv2.imread(img_path) + img = cv2.resize( + img, (re_shape, re_shape), interpolation=cv2.INTER_LANCZOS4) + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + img = np.transpose(img, [2, 0, 1]) / 255 + img = np.expand_dims(img, 0) + img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) + img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) + img -= img_mean + img /= img_std + return img.astype(np.float32) + + +def benchmark(img_file, onnx_file, re_shape): + + ie = Core() + net = ie.read_model(onnx_file) + + test_image = image_preprocess_mobilenetv3(img_file, re_shape) + + compiled_model = ie.compile_model(net, 'CPU') + + # benchmark + loop_num = 100 + warm_up = 8 + timeall = 0 + time_min = float("inf") + time_max = float('-inf') + + for i in range(loop_num + warm_up): + time0 = time.time() + #perform the inference step + + output = compiled_model.infer_new_request({0: test_image}) + time1 = time.time() + timed = time1 - time0 + + if i >= warm_up: + timeall = timeall + timed + time_min = min(time_min, timed) + time_max = max(time_max, timed) + + time_avg = timeall / loop_num + + print( + f'inference_time(ms): min={round(time_min*1000, 2)}, max = {round(time_max*1000, 1)}, avg = {round(time_avg*1000, 1)}' + ) + + +if __name__ == '__main__': + + onnx_path = "out_onnx" + onnx_file = onnx_path + "/picodet_s_320_coco.onnx" + + parser = argparse.ArgumentParser() + parser.add_argument( + '--img_path', + type=str, + default='demo/000000570688.jpg', + help="image path") + parser.add_argument( + '--onnx_path', + type=str, + default='out_onnxsim/picodet_xs_320_coco_lcnet.onnx', + help="onnx filepath") + parser.add_argument('--in_shape', type=int, default=320, help="input_size") + + args = parser.parse_args() + benchmark(args.img_path, args.onnx_path, args.in_shape) -- GitLab