Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
fb46345f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fb46345f
编写于
9月 13, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add groups in convolution operator.
上级
14ae8050
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
44 addition
and
14 deletion
+44
-14
paddle/operators/conv_op.cc
paddle/operators/conv_op.cc
+20
-2
paddle/operators/gemm_conv_op.h
paddle/operators/gemm_conv_op.h
+24
-12
未找到文件。
paddle/operators/conv_op.cc
浏览文件 @
fb46345f
...
@@ -31,12 +31,22 @@ class Conv2DOp : public framework::OperatorWithKernel {
...
@@ -31,12 +31,22 @@ class Conv2DOp : public framework::OperatorWithKernel {
auto
in
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
in
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
filter
=
ctx
.
Input
<
Tensor
>
(
"Filter"
);
auto
filter
=
ctx
.
Input
<
Tensor
>
(
"Filter"
);
auto
out
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
auto
out
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
std
::
vector
<
int
>
strides
=
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
int
groups
=
context
.
Attr
<
int
>
(
"groups"
);
int
input_channels
=
in
->
dims
()[
1
];
int
output_channels
=
filter
->
dims
()[
0
];
PADDLE_ENFORCE_EQ
(
in
->
dims
().
size
(),
4
,
"Conv2DOp intput should be 4-D."
);
PADDLE_ENFORCE_EQ
(
in
->
dims
().
size
(),
4
,
"Conv2DOp intput should be 4-D."
);
PADDLE_ENFORCE_EQ
(
filter
->
dims
().
size
(),
4
,
PADDLE_ENFORCE_EQ
(
filter
->
dims
().
size
(),
4
,
"Conv2DOp filter should be 4-D."
);
"Conv2DOp filter should be 4-D."
);
PADDLE_ENFORCE_EQ
(
input_channels
,
filter
->
dims
()[
1
]
*
groups
,
"The number of input channels should be equal to filter "
"channels * groups."
);
PADDLE_ENFORCE_EQ
(
output_channels
%
groups
,
0
,
"The number of output channels should be divided by groups."
);
std
::
vector
<
int
>
strides
=
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
auto
output_height
=
auto
output_height
=
outputSize
(
in
->
dims
()[
2
],
filter
->
dims
()[
2
],
paddings
[
0
],
strides
[
0
]);
outputSize
(
in
->
dims
()[
2
],
filter
->
dims
()[
2
],
paddings
[
0
],
strides
[
0
]);
auto
output_width
=
auto
output_width
=
...
@@ -71,6 +81,14 @@ the input, filter and strides, paddings parameters.
...
@@ -71,6 +81,14 @@ the input, filter and strides, paddings parameters.
)DOC"
);
)DOC"
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"strides of convolution operator."
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"strides of convolution operator."
);
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings of convolution operator."
);
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings of convolution operator."
);
AddAttr
<
int
>
(
"groups"
,
"group size of convolution operator. "
"Refer to grouped convolution in Alex Krizhevsky's paper: "
"when group=2, the first half of the filters are only connected to the "
"first half of the input channels, and the second half only connected "
"to the second half."
)
.
SetDefault
(
1
);
}
}
};
};
...
...
paddle/operators/gemm_conv_op.h
浏览文件 @
fb46345f
...
@@ -38,6 +38,7 @@ class GemmConvKernel : public framework::OpKernel {
...
@@ -38,6 +38,7 @@ class GemmConvKernel : public framework::OpKernel {
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
int
groups
=
context
.
Attr
<
int
>
(
"groups"
);
int
batch_size
=
input
->
dims
()[
0
];
int
batch_size
=
input
->
dims
()[
0
];
int
input_channels
=
input
->
dims
()[
1
];
int
input_channels
=
input
->
dims
()[
1
];
...
@@ -51,11 +52,11 @@ class GemmConvKernel : public framework::OpKernel {
...
@@ -51,11 +52,11 @@ class GemmConvKernel : public framework::OpKernel {
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
Place
,
T
>
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
Place
,
T
>
im2col
;
im2col
;
// use col_shape in the im2col calculation
// use col_shape in the im2col calculation
framework
::
DDim
col_shape
=
{
input_channels
,
filter_height
,
filter_width
,
framework
::
DDim
col_shape
=
{
input_channels
/
groups
,
filter_height
,
output_height
,
output_width
};
filter_width
,
output_height
,
output_width
};
// use col_matrix_shape in the gemm calculation
// use col_matrix_shape in the gemm calculation
framework
::
DDim
col_matrix_shape
=
{
framework
::
DDim
col_matrix_shape
=
{
input_channels
*
filter_height
*
filter_width
,
input_channels
/
groups
*
filter_height
*
filter_width
,
output_height
*
output_width
};
output_height
*
output_width
};
Tensor
col
;
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
...
@@ -78,18 +79,28 @@ class GemmConvKernel : public framework::OpKernel {
...
@@ -78,18 +79,28 @@ class GemmConvKernel : public framework::OpKernel {
const_cast
<
platform
::
DeviceContext
*>
(
context
.
device_context_
);
const_cast
<
platform
::
DeviceContext
*>
(
context
.
device_context_
);
// convolution operator: im2col + gemm
// convolution operator: im2col + gemm
int
in_step
=
input_channels
/
groups
;
int
out_step
=
output_channels
/
groups
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_slice_batch
=
input
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_slice_batch
=
output
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
// im2col
// im2col
Tensor
in_slice
=
input
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
in_slice
=
in_slice_batch
.
Slice
<
T
>
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
im2col
(
in_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
im2col
(
in_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
device_context
);
device_context
);
// gemm
// gemm
Tensor
out_slice
=
output
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
Tensor
out_slice
=
math
::
matmul
<
Place
,
T
>
(
filter
,
false
,
col_matrix
,
false
,
T
(
1.0
),
out_slice_batch
.
Slice
<
T
>
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
<
T
>
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
Place
,
T
>
(
filter_slice
,
false
,
col_matrix
,
false
,
T
(
1.0
),
&
out_slice
,
T
(
0.0
),
device_context
);
&
out_slice
,
T
(
0.0
),
device_context
);
}
}
}
}
}
};
};
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
>
...
@@ -114,6 +125,7 @@ class GemmConvGradKernel : public framework::OpKernel {
...
@@ -114,6 +125,7 @@ class GemmConvGradKernel : public framework::OpKernel {
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
// int groups = context.Attr<int>("groups");
int
batch_size
=
input
->
dims
()[
0
];
int
batch_size
=
input
->
dims
()[
0
];
int
input_channels
=
input
->
dims
()[
1
];
int
input_channels
=
input
->
dims
()[
1
];
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录