未验证 提交 fa8e88e0 编写于 作者: S shangliang Xu 提交者: GitHub

[docs] add ppyoloe e2e speed docs, test=document_fix (#7018) (#7085)

上级 8b032fbe
......@@ -50,6 +50,14 @@ PP-YOLOE is composed of following methods:
| PP-YOLOE+_x | 80 | 54.7 | 72.0 | 59.9 | 37.9 | 59.3 | 70.4 | 57.0 | 78.7 | 87.2 |
### End-to-end Speed
| Model | AP<sup>0.5:0.95 | TRT-FP32(fps) | TRT-FP16(fps) |
|:-----------:|:---------------:|:-------------:|:-------------:|
| PP-YOLOE+_s | 43.7 | 44.44 | 47.85 |
| PP-YOLOE+_m | 49.8 | 39.06 | 43.86 |
| PP-YOLOE+_l | 52.9 | 34.01 | 42.02 |
| PP-YOLOE+_x | 54.7 | 26.88 | 36.76 |
**Notes:**
- PP-YOLOE is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset.
......@@ -58,7 +66,7 @@ PP-YOLOE is composed of following methods:
- PP-YOLOE inference speed is tesed on single Tesla V100 with batch size as 1, **CUDA 10.2**, **CUDNN 7.6.5**, **TensorRT 6.0.1.8** in TensorRT mode.
- Refer to [Speed testing](#Speed-testing) to reproduce the speed testing results of PP-YOLOE.
- If you set `--run_benchmark=True`,you should install these dependencies at first, `pip install pynvml psutil GPUtil`.
- End-to-end speed test includes pre-processing + inference + post-processing and NMS time, using **Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz**, **single Tesla V100**, **CUDA 11.2**, **CUDNN 8.2.0**, **TensorRT 8.0.1.6**.
### Feature Models
......
......@@ -50,6 +50,14 @@ PP-YOLOE由以下方法组成
| PP-YOLOE+_x | 80 | 54.7 | 72.0 | 59.9 | 37.9 | 59.3 | 70.4 | 57.0 | 78.7 | 87.2 |
### 端到端速度
| 模型 | AP<sup>0.5:0.95 | TRT-FP32(fps) | TRT-FP16(fps) |
|:------------------------:|:---------------:|:-------------:|:-------------:|
| PP-YOLOE+_s | 43.7 | 44.44 | 47.85 |
| PP-YOLOE+_m | 49.8 | 39.06 | 43.86 |
| PP-YOLOE+_l | 52.9 | 34.01 | 42.02 |
| PP-YOLOE+_x | 54.7 | 26.88 | 36.76 |
**注意:**
- PP-YOLOE模型使用COCO数据集中train2017作为训练集,使用val2017和test-dev2017作为测试集。
......@@ -58,6 +66,7 @@ PP-YOLOE由以下方法组成
- PP-YOLOE模型推理速度测试采用单卡V100,batch size=1进行测试,使用**CUDA 10.2**, **CUDNN 7.6.5**,TensorRT推理速度测试使用**TensorRT 6.0.1.8**
- 参考[速度测试](#速度测试)以复现PP-YOLOE推理速度测试结果。
- 如果你设置了`--run_benchmark=True`, 你首先需要安装以下依赖`pip install pynvml psutil GPUtil`
- 端到端速度测试包含模型前处理 + 模型推理 + 模型后处理及NMS的时间,测试使用**Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz**, **单卡V100**, **CUDA 11.2**, **CUDNN 8.2.0**, **TensorRT 8.0.1.6**
### 垂类应用模型
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册