diff --git a/docs/featured_model/YOLOv3_ENHANCEMENT.md b/docs/featured_model/YOLOv3_ENHANCEMENT.md index 20d746b6dffb077405a4f86e214acbc7bfb7141b..618857f653c626ee83a28aa8e188483c8322f193 100644 --- a/docs/featured_model/YOLOv3_ENHANCEMENT.md +++ b/docs/featured_model/YOLOv3_ENHANCEMENT.md @@ -32,7 +32,7 @@ PaddleDetection实现版本中使用了 [Bag of Freebies for Training Object Det ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 -python tools/train.py -c configs/dcn/yolov3_r50vd_dcn_iouloss_obj365_pretrained_coco.yml +python tools/train.py -c configs/dcn/yolov3_r50vd_dcn_db_iouloss_obj365_pretrained_coco.yml ``` 更多模型参数请使用``python tools/train.py --help``查看,或参考[训练、评估及参数说明](../tutorials/GETTING_STARTED_cn.md)文档 diff --git a/docs/tutorials/QUICK_STARTED_cn.md b/docs/tutorials/QUICK_STARTED_cn.md index 271732d9cca6d61dfcd737d94c52733688ca9677..df0b318cc368088d4a9dedbb29287b099802d811 100644 --- a/docs/tutorials/QUICK_STARTED_cn.md +++ b/docs/tutorials/QUICK_STARTED_cn.md @@ -13,7 +13,7 @@ export CUDA_VISIBLE_DEVICES=0 ## 数据准备 -数据集参考[Kaggle数据集](https://www.kaggle.com/mbkinaci/fruit-images-for-object-detection),其中训练数据集240张图片,测试数据集60张图片,数据类别为3类:苹果,橘子,香蕉。[下载链接](https://dataset.bj.bcebos.com/PaddleDetection_demo/fruit-detection.tar)。数据下载后分别解压即可, 数据准备脚本位于[download_fruit.py](../../dataset/fruit/download_fruit.py)。下载数据方式如下: +数据集参考[Kaggle数据集](https://www.kaggle.com/mbkinaci/fruit-images-for-object-detection),其中训练数据集240张图片,测试数据集60张图片,数据类别为3类:苹果,橘子,香蕉。[下载链接](https://dataset.bj.bcebos.com/PaddleDetection_demo/fruit-detection.tar)。数据下载后分别解压即可, 数据准备脚本位于[download_fruit.py](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dataset/fruit/download_fruit.py)。下载数据方式如下: ```bash python dataset/fruit/download_fruit.py