未验证 提交 fa1ba1aa 编写于 作者: L LokeZhou 提交者: GitHub

Add vitpose (#7894)

* add vitpose

* fix keypoints/README_en.md document_fix=test

* add vitpose_base_coco_256x192

* vitpose.py add some annotation for discriminate visio_transformer.py

* output_heatmap use gpu
上级 f4ef20df
......@@ -72,8 +72,11 @@ COCO数据集
| LiteHRNet-18 |Top-Down| 384x288 | 69.7 | [lite_hrnet_18_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_18_384x288_coco.yml) |
| LiteHRNet-30 | Top-Down|256x192 | 69.4 | [lite_hrnet_30_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_256x192_coco.yml) |
| LiteHRNet-30 |Top-Down| 384x288 | 72.5 | [lite_hrnet_30_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_384x288_coco.yml) |
|Vitpose_base_simple |Top-Down| 256x192 | 77.7 | [vitpose_base_simple_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/vitpose_base_simple_256x192_coco.pdparams) | [config](./vit_pose/vitpose_base_simple_coco_256x192.yml) |
|Vitpose_base |Top-Down| 256x192 | 78.2 | [vitpose_base_coco_256x192.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/vitpose_base_coco_256x192.pdparams) | [config](./vit_pose/vitpose_base_coco_256x192.yml) |
备注: Top-Down模型测试AP结果基于GroundTruth标注框
备注: 1.Top-Down模型测试AP结果基于GroundTruth标注框
2.vitpose训练用[MAE](https://bj.bcebos.com/v1/paddledet/models/keypoint/mae_pretrain_vit_base.pdparams)做为预训练模型
MPII数据集
| 模型 | 方案| 输入尺寸 | PCKh(Mean) | PCKh(Mean@0.1) | 模型下载 | 配置文件 |
......@@ -284,4 +287,12 @@ python deploy/python/det_keypoint_unite_infer.py \
booktitle={CVPR},
year={2021}
}
@inproceedings{
xu2022vitpose,
title={ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation},
author={Yufei Xu and Jing Zhang and Qiming Zhang and Dacheng Tao},
booktitle={Advances in Neural Information Processing Systems},
year={2022},
}
```
......@@ -75,8 +75,11 @@ COCO Dataset
| LiteHRNet-18 | 384x288 | 69.7 | [lite_hrnet_18_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_18_384x288_coco.yml) |
| LiteHRNet-30 | 256x192 | 69.4 | [lite_hrnet_30_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_256x192_coco.yml) |
| LiteHRNet-30 | 384x288 | 72.5 | [lite_hrnet_30_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_384x288_coco.yml) |
| Vitpose_base_simple | 256x192 | 77.7 | [vitpose_base_simple_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/vitpose_base_simple_256x192_coco.pdparams) | [config](./vit_pose/vitpose_base_simple_coco_256x192.yml) |
| Vitpose_base | 256x192 | 78.2 | [vitpose_base_coco_256x192.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/vitpose_base_coco_256x192.pdparams) | [config](./vit_pose/vitpose_base_coco_256x192.yml) |
Note:The AP results of Top-Down models are based on bounding boxes in GroundTruth.
Note:1.The AP results of Top-Down models are based on bounding boxes in GroundTruth.
2.Vitpose training uses [MAE](https://bj.bcebos.com/v1/paddledet/models/keypoint/mae_pretrain_vit_base.pdparams) as the pre-training model
MPII Dataset
| Model | Input Size | PCKh(Mean) | PCKh(Mean@0.1) | Model Download | Config File |
......@@ -266,4 +269,12 @@ We provide benchmarks in different runtime environments for your reference when
booktitle={CVPR},
year={2021}
}
@inproceedings{
xu2022vitpose,
title={ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation},
author={Yufei Xu and Jing Zhang and Qiming Zhang and Dacheng Tao},
booktitle={Advances in Neural Information Processing Systems},
year={2022},
}
```
use_gpu: true
log_iter: 50
save_dir: output
snapshot_epoch: 10
weights: output/vitpose_base_simple_coco_256x192/model_final
epoch: 210
num_joints: &num_joints 17
pixel_std: &pixel_std 200
metric: KeyPointTopDownCOCOEval
num_classes: 1
train_height: &train_height 256
train_width: &train_width 192
trainsize: &trainsize [*train_width, *train_height]
hmsize: &hmsize [48, 64]
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]]
#####model
architecture: VitPose_TopDown
pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/keypoint/mae_pretrain_vit_base.pdparams
VitPose_TopDown:
backbone: ViT
head: TopdownHeatmapSimpleHead
post_process: VitPosePostProcess
loss: KeyPointMSELoss
flip_test: True
ViT:
img_size: [256, 192]
patch_size: 16
embed_dim: 768
depth: 12
num_heads: 12
ratio: 1
mlp_ratio: 4
qkv_bias: True
drop_path_rate: 0.3
epsilon: 0.000001
TopdownHeatmapSimpleHead:
in_channels: 768
num_deconv_layers: 2
num_deconv_filters: [256,256]
num_deconv_kernels: [4,4]
out_channels: 17
shift_heatmap: False
flip_pairs: *flip_perm
extra: {final_conv_kernel: 1}
VitPosePostProcess:
use_dark: True
KeyPointMSELoss:
use_target_weight: true
loss_scale: 1.0
####optimizer
LearningRate:
base_lr: 0.0005
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [170, 200]
- !LinearWarmup
start_factor: 0.001
steps: 500
OptimizerBuilder:
clip_grad_by_norm: 1.0
optimizer:
type: AdamWDL
betas: [0.9, 0.999]
weight_decay: 0.1
num_layers: 12
layer_decay: 0.75
filter_bias_and_bn: True
skip_decay_names: ['pos_embed','norm']
set_param_lr_func: 'layerwise_lr_decay'
#####data
TrainDataset:
!KeypointTopDownCocoDataset
image_dir: train2017
anno_path: annotations/person_keypoints_train2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
center_scale: 0.4
EvalDataset:
!KeypointTopDownCocoDataset
image_dir: val2017
anno_path: annotations/person_keypoints_val2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
image_thre: 0.0
use_gt_bbox: True
TestDataset:
!ImageFolder
anno_path: dataset/coco/keypoint_imagelist.txt
worker_num: 4
global_mean: &global_mean [0.485, 0.456, 0.406]
global_std: &global_std [0.229, 0.224, 0.225]
TrainReader:
sample_transforms:
- RandomFlipHalfBodyTransform:
scale: 0.5
rot: 40
num_joints_half_body: 8
prob_half_body: 0.3
pixel_std: *pixel_std
trainsize: *trainsize
upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
flip_pairs: *flip_perm
- TopDownAffine:
trainsize: *trainsize
use_udp: true
- ToHeatmapsTopDown_UDP:
hmsize: *hmsize
sigma: 2
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 64
shuffle: True
drop_last: True
EvalReader:
sample_transforms:
- TopDownAffine:
trainsize: *trainsize
use_udp: true
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 64
TestReader:
inputs_def:
image_shape: [3, *train_height, *train_width]
sample_transforms:
- Decode: {}
- TopDownEvalAffine:
trainsize: *trainsize
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 1
fuse_normalize: false
use_gpu: true
log_iter: 50
save_dir: output
snapshot_epoch: 10
weights: output/vitpose_base_simple_coco_256x192/model_final
epoch: 210
num_joints: &num_joints 17
pixel_std: &pixel_std 200
metric: KeyPointTopDownCOCOEval
num_classes: 1
train_height: &train_height 256
train_width: &train_width 192
trainsize: &trainsize [*train_width, *train_height]
hmsize: &hmsize [48, 64]
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]]
#####model
architecture: VitPose_TopDown
pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/keypoint/mae_pretrain_vit_base.pdparams
VitPose_TopDown:
backbone: ViT
head: TopdownHeatmapSimpleHead
post_process: VitPosePostProcess
loss: KeyPointMSELoss
flip_test: True
ViT:
img_size: [256, 192]
qkv_bias: True
drop_path_rate: 0.3
epsilon: 0.000001
TopdownHeatmapSimpleHead:
in_channels: 768
num_deconv_layers: 0
num_deconv_filters: []
num_deconv_kernels: []
upsample: 4
shift_heatmap: False
flip_pairs: *flip_perm
extra: {final_conv_kernel: 3}
VitPosePostProcess:
use_dark: True
KeyPointMSELoss:
use_target_weight: true
loss_scale: 1.0
####optimizer
LearningRate:
base_lr: 0.0005
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [170, 200]
- !LinearWarmup
start_factor: 0.001
steps: 500
OptimizerBuilder:
clip_grad_by_norm: 1.0
optimizer:
type: AdamWDL
betas: [0.9, 0.999]
weight_decay: 0.1
num_layers: 12
layer_decay: 0.75
filter_bias_and_bn: True
skip_decay_names: ['pos_embed','norm']
set_param_lr_func: 'layerwise_lr_decay'
#####data
TrainDataset:
!KeypointTopDownCocoDataset
image_dir: train2017
anno_path: annotations/person_keypoints_train2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
center_scale: 0.4
EvalDataset:
!KeypointTopDownCocoDataset
image_dir: val2017
anno_path: annotations/person_keypoints_val2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
image_thre: 0.0
use_gt_bbox: True
TestDataset:
!ImageFolder
anno_path: dataset/coco/keypoint_imagelist.txt
worker_num: 4
global_mean: &global_mean [0.485, 0.456, 0.406]
global_std: &global_std [0.229, 0.224, 0.225]
TrainReader:
sample_transforms:
- RandomFlipHalfBodyTransform:
scale: 0.5
rot: 40
num_joints_half_body: 8
prob_half_body: 0.3
pixel_std: *pixel_std
trainsize: *trainsize
upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
flip_pairs: *flip_perm
- TopDownAffine:
trainsize: *trainsize
use_udp: true
- ToHeatmapsTopDown_UDP:
hmsize: *hmsize
sigma: 2
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 64
shuffle: True
drop_last: True
EvalReader:
sample_transforms:
- TopDownAffine:
trainsize: *trainsize
use_udp: true
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 64
TestReader:
inputs_def:
image_shape: [3, *train_height, *train_width]
sample_transforms:
- Decode: {}
- TopDownEvalAffine:
trainsize: *trainsize
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 1
fuse_normalize: false
......@@ -491,7 +491,8 @@ class KeypointTopDownCocoDataset(KeypointTopDownBaseDataset):
bbox_file=None,
use_gt_bbox=True,
pixel_std=200,
image_thre=0.0):
image_thre=0.0,
center_scale=None):
super().__init__(dataset_dir, image_dir, anno_path, num_joints,
transform)
......@@ -500,6 +501,7 @@ class KeypointTopDownCocoDataset(KeypointTopDownBaseDataset):
self.trainsize = trainsize
self.pixel_std = pixel_std
self.image_thre = image_thre
self.center_scale = center_scale
self.dataset_name = 'coco'
def parse_dataset(self):
......@@ -574,6 +576,9 @@ class KeypointTopDownCocoDataset(KeypointTopDownBaseDataset):
center[1] = y + h * 0.5
aspect_ratio = self.trainsize[0] * 1.0 / self.trainsize[1]
if self.center_scale is not None and np.random.rand() < 0.3:
center += self.center_scale * (np.random.rand(2) - 0.5) * [w, h]
if w > aspect_ratio * h:
h = w * 1.0 / aspect_ratio
elif w < aspect_ratio * h:
......
......@@ -25,6 +25,7 @@ from . import ttfnet
from . import s2anet
from . import keypoint_hrhrnet
from . import keypoint_hrnet
from . import keypoint_vitpose
from . import jde
from . import deepsort
from . import fairmot
......@@ -55,6 +56,7 @@ from .ttfnet import *
from .s2anet import *
from .keypoint_hrhrnet import *
from .keypoint_hrnet import *
from .keypoint_vitpose import *
from .jde import *
from .deepsort import *
from .fairmot import *
......
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import numpy as np
import math
import cv2
from ppdet.core.workspace import register, create, serializable
from .meta_arch import BaseArch
from ..keypoint_utils import transform_preds
from .. import layers as L
__all__ = ['VitPose_TopDown', 'VitPosePostProcess']
@register
class VitPose_TopDown(BaseArch):
__category__ = 'architecture'
__inject__ = ['loss']
def __init__(self, backbone, head, loss, post_process, flip_test):
"""
VitPose network, see https://arxiv.org/pdf/2204.12484v2.pdf
Args:
backbone (nn.Layer): backbone instance
post_process (object): `HRNetPostProcess` instance
"""
super(VitPose_TopDown, self).__init__()
self.backbone = backbone
self.head = head
self.loss = loss
self.post_process = post_process
self.flip_test = flip_test
@classmethod
def from_config(cls, cfg, *args, **kwargs):
# backbone
backbone = create(cfg['backbone'])
#head
head = create(cfg['head'])
#post_process
post_process = create(cfg['post_process'])
return {
'backbone': backbone,
'head': head,
'post_process': post_process
}
def _forward_train(self):
feats = self.backbone.forward_features(self.inputs['image'])
vitpost_output = self.head(feats)
return self.loss(vitpost_output, self.inputs)
def _forward_test(self):
feats = self.backbone.forward_features(self.inputs['image'])
output_heatmap = self.head(feats)
if self.flip_test:
img_flipped = self.inputs['image'].flip(3)
features_flipped = self.backbone.forward_features(img_flipped)
output_flipped_heatmap = self.head.inference_model(features_flipped,
self.flip_test)
output_heatmap = (output_heatmap + output_flipped_heatmap) * 0.5
imshape = (self.inputs['im_shape'].numpy()
)[:, ::-1] if 'im_shape' in self.inputs else None
center = self.inputs['center'].numpy(
) if 'center' in self.inputs else np.round(imshape / 2.)
scale = self.inputs['scale'].numpy(
) if 'scale' in self.inputs else imshape / 200.
result = self.post_process(output_heatmap.cpu().numpy(), center, scale)
return result
def get_loss(self):
return self._forward_train()
def get_pred(self):
res_lst = self._forward_test()
outputs = {'keypoint': res_lst}
return outputs
@register
@serializable
class VitPosePostProcess(object):
def __init__(self, use_dark=False):
self.use_dark = use_dark
def get_max_preds(self, heatmaps):
'''get predictions from score maps
Args:
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
Returns:
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
'''
assert isinstance(heatmaps,
np.ndarray), 'heatmaps should be numpy.ndarray'
assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'
batch_size = heatmaps.shape[0]
num_joints = heatmaps.shape[1]
width = heatmaps.shape[3]
heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1))
idx = np.argmax(heatmaps_reshaped, 2)
maxvals = np.amax(heatmaps_reshaped, 2)
maxvals = maxvals.reshape((batch_size, num_joints, 1))
idx = idx.reshape((batch_size, num_joints, 1))
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
preds[:, :, 0] = (preds[:, :, 0]) % width
preds[:, :, 1] = np.floor((preds[:, :, 1]) // width)
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
pred_mask = pred_mask.astype(np.float32)
preds *= pred_mask
return preds, maxvals
def post_datk_udp(self, coords, batch_heatmaps, kernel=3):
"""DARK post-pocessing. Implemented by udp. Paper ref: Huang et al. The
Devil is in the Details: Delving into Unbiased Data Processing for Human
Pose Estimation (CVPR 2020). Zhang et al. Distribution-Aware Coordinate
Representation for Human Pose Estimation (CVPR 2020).
Note:
- batch size: B
- num keypoints: K
- num persons: N
- height of heatmaps: H
- width of heatmaps: W
B=1 for bottom_up paradigm where all persons share the same heatmap.
B=N for top_down paradigm where each person has its own heatmaps.
Args:
coords (np.ndarray[N, K, 2]): Initial coordinates of human pose.
batch_heatmaps (np.ndarray[B, K, H, W]): batch_heatmaps
kernel (int): Gaussian kernel size (K) for modulation.
Returns:
np.ndarray([N, K, 2]): Refined coordinates.
"""
if not isinstance(batch_heatmaps, np.ndarray):
batch_heatmaps = batch_heatmaps.cpu().numpy()
B, K, H, W = batch_heatmaps.shape
N = coords.shape[0]
assert (B == 1 or B == N)
for heatmaps in batch_heatmaps:
for heatmap in heatmaps:
cv2.GaussianBlur(heatmap, (kernel, kernel), 0, heatmap)
np.clip(batch_heatmaps, 0.001, 50, batch_heatmaps)
np.log(batch_heatmaps, batch_heatmaps)
batch_heatmaps_pad = np.pad(batch_heatmaps, ((0, 0), (0, 0), (1, 1),
(1, 1)),
mode='edge').flatten()
index = coords[..., 0] + 1 + (coords[..., 1] + 1) * (W + 2)
index += (W + 2) * (H + 2) * np.arange(0, B * K).reshape(-1, K)
index = index.astype(int).reshape(-1, 1)
i_ = batch_heatmaps_pad[index]
ix1 = batch_heatmaps_pad[index + 1]
iy1 = batch_heatmaps_pad[index + W + 2]
ix1y1 = batch_heatmaps_pad[index + W + 3]
ix1_y1_ = batch_heatmaps_pad[index - W - 3]
ix1_ = batch_heatmaps_pad[index - 1]
iy1_ = batch_heatmaps_pad[index - 2 - W]
dx = 0.5 * (ix1 - ix1_)
dy = 0.5 * (iy1 - iy1_)
derivative = np.concatenate([dx, dy], axis=1)
derivative = derivative.reshape(N, K, 2, 1)
dxx = ix1 - 2 * i_ + ix1_
dyy = iy1 - 2 * i_ + iy1_
dxy = 0.5 * (ix1y1 - ix1 - iy1 + i_ + i_ - ix1_ - iy1_ + ix1_y1_)
hessian = np.concatenate([dxx, dxy, dxy, dyy], axis=1)
hessian = hessian.reshape(N, K, 2, 2)
hessian = np.linalg.inv(hessian + np.finfo(np.float32).eps * np.eye(2))
coords -= np.einsum('ijmn,ijnk->ijmk', hessian, derivative).squeeze()
return coords
def transform_preds_udp(self,
coords,
center,
scale,
output_size,
use_udp=True):
"""Get final keypoint predictions from heatmaps and apply scaling and
translation to map them back to the image.
Note:
num_keypoints: K
Args:
coords (np.ndarray[K, ndims]):
* If ndims=2, corrds are predicted keypoint location.
* If ndims=4, corrds are composed of (x, y, scores, tags)
* If ndims=5, corrds are composed of (x, y, scores, tags,
flipped_tags)
center (np.ndarray[2, ]): Center of the bounding box (x, y).
scale (np.ndarray[2, ]): Scale of the bounding box
wrt [width, height].
output_size (np.ndarray[2, ] | list(2,)): Size of the
destination heatmaps.
use_udp (bool): Use unbiased data processing
Returns:
np.ndarray: Predicted coordinates in the images.
"""
assert coords.shape[1] in (2, 4, 5)
assert len(center) == 2
assert len(scale) == 2
assert len(output_size) == 2
# Recover the scale which is normalized by a factor of 200.
scale = scale * 200.0
if use_udp:
scale_x = scale[0] / (output_size[0] - 1.0)
scale_y = scale[1] / (output_size[1] - 1.0)
else:
scale_x = scale[0] / output_size[0]
scale_y = scale[1] / output_size[1]
target_coords = np.ones_like(coords)
target_coords[:, 0] = coords[:, 0] * scale_x + center[0] - scale[
0] * 0.5
target_coords[:, 1] = coords[:, 1] * scale_y + center[1] - scale[
1] * 0.5
return target_coords
def get_final_preds(self, heatmaps, center, scale, kernelsize=11):
"""the highest heatvalue location with a quarter offset in the
direction from the highest response to the second highest response.
Args:
heatmaps (numpy.ndarray): The predicted heatmaps
center (numpy.ndarray): The boxes center
scale (numpy.ndarray): The scale factor
Returns:
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
"""
coords, maxvals = self.get_max_preds(heatmaps)
N, K, H, W = heatmaps.shape
if self.use_dark:
coords = self.post_datk_udp(coords, heatmaps, kernelsize)
preds = coords.copy()
# Transform back to the image
for i in range(N):
preds[i] = self.transform_preds_udp(preds[i], center[i],
scale[i], [W, H])
else:
for n in range(coords.shape[0]):
for p in range(coords.shape[1]):
hm = heatmaps[n][p]
px = int(math.floor(coords[n][p][0] + 0.5))
py = int(math.floor(coords[n][p][1] + 0.5))
if 1 < px < W - 1 and 1 < py < H - 1:
diff = np.array([
hm[py][px + 1] - hm[py][px - 1],
hm[py + 1][px] - hm[py - 1][px]
])
coords[n][p] += np.sign(diff) * .25
preds = coords.copy()
# Transform back
for i in range(coords.shape[0]):
preds[i] = transform_preds(coords[i], center[i], scale[i],
[W, H])
return preds, maxvals
def __call__(self, output, center, scale):
preds, maxvals = self.get_final_preds(output, center, scale)
outputs = [[
np.concatenate(
(preds, maxvals), axis=-1), np.mean(
maxvals, axis=1)
]]
return outputs
\ No newline at end of file
......@@ -62,4 +62,5 @@ from .vision_transformer import *
from .mobileone import *
from .trans_encoder import *
from .focalnet import *
from .vitpose import *
from .vit_mae import *
\ No newline at end of file
# copyright (c) 2023 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code was based on https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
# reference: https://arxiv.org/abs/2010.11929
from collections.abc import Callable
import numpy as np
import paddle
import paddle.nn as nn
from paddle.nn.initializer import TruncatedNormal, Constant, Normal
from ppdet.core.workspace import register, serializable
trunc_normal_ = TruncatedNormal(std=.02)
def to_2tuple(x):
if isinstance(x, (list, tuple)):
return x
return tuple([x] * 2)
def drop_path(x, drop_prob=0., training=False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1.0 - drop_prob).astype(x.dtype)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape).astype(x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
return output
class DropPath(nn.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Identity(nn.Layer):
def __init__(self):
super(Identity, self).__init__()
def forward(self, input):
return input
class Mlp(nn.Layer):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Layer):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
N, C = x.shape[1:]
qkv = self.qkv(x).reshape((-1, N, 3, self.num_heads, C //
self.num_heads)).transpose((2, 0, 3, 1, 4))
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale
attn = nn.functional.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C))
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Layer):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer='nn.LayerNorm',
epsilon=1e-5):
super().__init__()
if isinstance(norm_layer, str):
self.norm1 = eval(norm_layer)(dim, epsilon=epsilon)
elif isinstance(norm_layer, Callable):
self.norm1 = norm_layer(dim)
else:
raise TypeError(
"The norm_layer must be str or paddle.nn.layer.Layer class")
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
if isinstance(norm_layer, str):
self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)
elif isinstance(norm_layer, Callable):
self.norm2 = norm_layer(dim)
else:
raise TypeError(
"The norm_layer must be str or paddle.nn.layer.Layer class")
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Layer):
""" Image to Patch Embedding
"""
def __init__(self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
ratio=1):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (
img_size[0] // patch_size[0]) * (ratio**2)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2D(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=(patch_size[0] // ratio),
padding=(4 + 2 * (ratio // 2 - 1), 4 + 2 * (ratio // 2 - 1)))
def forward(self, x):
B, C, H, W = x.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
return x
@register
@serializable
class ViT(nn.Layer):
""" Vision Transformer with support for patch input
This module is different from ppdet's VisionTransformer (from ppdet/modeling/backbones/visio_transformer.py),
the main differences are:
1.the module PatchEmbed.proj has padding set,padding=(4 + 2 * (ratio // 2 - 1), 4 + 2 * (ratio // 2 - 1),
VisionTransformer dose not
2.Attention module qkv is standard.but VisionTransformer provide more options
3.MLP module only one Dropout,and VisionTransformer twice;
4.VisionTransformer provide fpn layer,but the module does not.
"""
def __init__(self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=False,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer='nn.LayerNorm',
epsilon=1e-5,
ratio=1,
pretrained=None,
**kwargs):
super().__init__()
self.pretrained = pretrained
self.num_features = self.embed_dim = embed_dim
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
ratio=ratio)
num_patches = self.patch_embed.num_patches
self.pos_embed = self.create_parameter(
shape=(1, num_patches + 1, embed_dim),
default_initializer=trunc_normal_)
self.add_parameter("pos_embed", self.pos_embed)
dpr = np.linspace(0, drop_path_rate, depth, dtype='float32')
self.blocks = nn.LayerList([
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
epsilon=epsilon) for i in range(depth)
])
self.last_norm = eval(norm_layer)(embed_dim, epsilon=epsilon)
trunc_normal_(self.pos_embed)
self._init_weights()
def _init_weights(self):
pretrained = self.pretrained
if pretrained:
if 'http' in pretrained: #URL
path = paddle.utils.download.get_weights_path_from_url(
pretrained)
else: #model in local path
path = pretrained
load_state_dict = paddle.load(path)
self.set_state_dict(load_state_dict)
print("Load load_state_dict:", path)
def forward_features(self, x):
B = paddle.shape(x)[0]
x = self.patch_embed(x)
B, D, Hp, Wp = x.shape
x = x.flatten(2).transpose([0, 2, 1])
x = x + self.pos_embed[:, 1:] + self.pos_embed[:, :1]
for blk in self.blocks:
x = blk(x)
x = self.last_norm(x)
xp = paddle.reshape(
paddle.transpose(
x, perm=[0, 2, 1]), shape=[B, -1, Hp, Wp])
return xp
......@@ -39,6 +39,7 @@ from . import yolof_head
from . import ppyoloe_contrast_head
from . import centertrack_head
from . import sparse_roi_head
from . import vitpose_head
from .bbox_head import *
from .mask_head import *
......@@ -68,3 +69,4 @@ from .ppyoloe_contrast_head import *
from .centertrack_head import *
from .sparse_roi_head import *
from .petr_head import *
from .vitpose_head import *
\ No newline at end of file
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from ppdet.modeling.keypoint_utils import resize, flip_back
from paddle.nn.initializer import TruncatedNormal, Constant, Normal
from ppdet.modeling.layers import ConvTranspose2d, BatchNorm2d
trunc_normal_ = TruncatedNormal(std=.02)
normal_ = Normal(std=0.001)
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)
__all__ = ['TopdownHeatmapSimpleHead']
@register
class TopdownHeatmapSimpleHead(nn.Layer):
def __init__(self,
in_channels=768,
out_channels=17,
num_deconv_layers=3,
num_deconv_filters=(256, 256, 256),
num_deconv_kernels=(4, 4, 4),
extra=None,
in_index=0,
input_transform=None,
align_corners=False,
upsample=0,
flip_pairs=None,
shift_heatmap=False,
target_type='GaussianHeatmap'):
super(TopdownHeatmapSimpleHead, self).__init__()
self.in_channels = in_channels
self.upsample = upsample
self.flip_pairs = flip_pairs
self.shift_heatmap = shift_heatmap
self.target_type = target_type
self._init_inputs(in_channels, in_index, input_transform)
self.in_index = in_index
self.align_corners = align_corners
if extra is not None and not isinstance(extra, dict):
raise TypeError('extra should be dict or None.')
if num_deconv_layers > 0:
self.deconv_layers = self._make_deconv_layer(
num_deconv_layers,
num_deconv_filters,
num_deconv_kernels, )
elif num_deconv_layers == 0:
self.deconv_layers = nn.Identity()
else:
raise ValueError(
f'num_deconv_layers ({num_deconv_layers}) should >= 0.')
identity_final_layer = False
if extra is not None and 'final_conv_kernel' in extra:
assert extra['final_conv_kernel'] in [0, 1, 3]
if extra['final_conv_kernel'] == 3:
padding = 1
elif extra['final_conv_kernel'] == 1:
padding = 0
else:
# 0 for Identity mapping.
identity_final_layer = True
kernel_size = extra['final_conv_kernel']
else:
kernel_size = 1
padding = 0
if identity_final_layer:
self.final_layer = nn.Identity()
else:
conv_channels = num_deconv_filters[
-1] if num_deconv_layers > 0 else self.in_channels
layers = []
if extra is not None:
num_conv_layers = extra.get('num_conv_layers', 0)
num_conv_kernels = extra.get('num_conv_kernels',
[1] * num_conv_layers)
for i in range(num_conv_layers):
layers.append(
nn.Conv2D(
in_channels=conv_channels,
out_channels=conv_channels,
kernel_size=num_conv_kernels[i],
stride=1,
padding=(num_conv_kernels[i] - 1) // 2))
layers.append(nn.BatchNorm2D(conv_channels))
layers.append(nn.ReLU())
layers.append(
nn.Conv2D(
in_channels=conv_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=1,
padding=(padding, padding)))
if len(layers) > 1:
self.final_layer = nn.Sequential(*layers)
else:
self.final_layer = layers[0]
self.init_weights()
@staticmethod
def _get_deconv_cfg(deconv_kernel):
"""Get configurations for deconv layers."""
if deconv_kernel == 4:
padding = 1
output_padding = 0
elif deconv_kernel == 3:
padding = 1
output_padding = 1
elif deconv_kernel == 2:
padding = 0
output_padding = 0
else:
raise ValueError(f'Not supported num_kernels ({deconv_kernel}).')
return deconv_kernel, padding, output_padding
def _init_inputs(self, in_channels, in_index, input_transform):
"""Check and initialize input transforms.
"""
if input_transform is not None:
assert input_transform in ['resize_concat', 'multiple_select']
self.input_transform = input_transform
self.in_index = in_index
if input_transform is not None:
assert isinstance(in_channels, (list, tuple))
assert isinstance(in_index, (list, tuple))
assert len(in_channels) == len(in_index)
if input_transform == 'resize_concat':
self.in_channels = sum(in_channels)
else:
self.in_channels = in_channels
else:
assert isinstance(in_channels, int)
assert isinstance(in_index, int)
self.in_channels = in_channels
def _transform_inputs(self, inputs):
"""Transform inputs for decoder.
"""
if not isinstance(inputs, list):
if not isinstance(inputs, list):
if self.upsample > 0:
inputs = resize(
input=F.relu(inputs),
scale_factor=self.upsample,
mode='bilinear',
align_corners=self.align_corners)
return inputs
if self.input_transform == 'resize_concat':
inputs = [inputs[i] for i in self.in_index]
upsampled_inputs = [
resize(
input=x,
size=inputs[0].shape[2:],
mode='bilinear',
align_corners=self.align_corners) for x in inputs
]
inputs = paddle.concat(upsampled_inputs, dim=1)
elif self.input_transform == 'multiple_select':
inputs = [inputs[i] for i in self.in_index]
else:
inputs = inputs[self.in_index]
return inputs
def forward(self, x):
"""Forward function."""
x = self._transform_inputs(x)
x = self.deconv_layers(x)
x = self.final_layer(x)
return x
def inference_model(self, x, flip_pairs=None):
"""Inference function.
Returns:
output_heatmap (np.ndarray): Output heatmaps.
Args:
x (torch.Tensor[N,K,H,W]): Input features.
flip_pairs (None | list[tuple]):
Pairs of keypoints which are mirrored.
"""
output = self.forward(x)
if flip_pairs is not None:
output_heatmap = flip_back(
output, self.flip_pairs, target_type=self.target_type)
# feature is not aligned, shift flipped heatmap for higher accuracy
if self.shift_heatmap:
output_heatmap[:, :, :, 1:] = output_heatmap[:, :, :, :-1]
else:
output_heatmap = output
return output_heatmap
def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
"""Make deconv layers."""
if num_layers != len(num_filters):
error_msg = f'num_layers({num_layers}) ' \
f'!= length of num_filters({len(num_filters)})'
raise ValueError(error_msg)
if num_layers != len(num_kernels):
error_msg = f'num_layers({num_layers}) ' \
f'!= length of num_kernels({len(num_kernels)})'
raise ValueError(error_msg)
layers = []
for i in range(num_layers):
kernel, padding, output_padding = \
self._get_deconv_cfg(num_kernels[i])
planes = num_filters[i]
layers.append(
ConvTranspose2d(
in_channels=self.in_channels,
out_channels=planes,
kernel_size=kernel,
stride=2,
padding=padding,
output_padding=output_padding,
bias=False))
layers.append(nn.BatchNorm2D(planes))
layers.append(nn.ReLU())
self.in_channels = planes
return nn.Sequential(*layers)
def init_weights(self):
"""Initialize model weights."""
if not isinstance(self.deconv_layers, nn.Identity):
for m in self.deconv_layers:
if isinstance(m, nn.BatchNorm2D):
ones_(m.weight)
ones_(m.bias)
if not isinstance(self.final_layer, nn.Conv2D):
for m in self.final_layer:
if isinstance(m, nn.Conv2D):
normal_(m.weight)
zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2D):
ones_(m.weight)
ones_(m.bias)
else:
normal_(self.final_layer.weight)
zeros_(self.final_layer.bias)
......@@ -17,6 +17,7 @@ this code is based on https://github.com/open-mmlab/mmpose
import cv2
import numpy as np
import paddle.nn.functional as F
def get_affine_mat_kernel(h, w, s, inv=False):
......@@ -340,3 +341,63 @@ def soft_oks_nms(kpts_db, thresh, sigmas=None, in_vis_thre=None):
keep = keep[:keep_cnt]
return keep
def resize(input,
size=None,
scale_factor=None,
mode='nearest',
align_corners=None,
warning=True):
if warning:
if size is not None and align_corners:
input_h, input_w = tuple(int(x) for x in input.shape[2:])
output_h, output_w = tuple(int(x) for x in size)
if output_h > input_h or output_w > output_h:
if ((output_h > 1 and output_w > 1 and input_h > 1 and
input_w > 1) and (output_h - 1) % (input_h - 1) and
(output_w - 1) % (input_w - 1)):
warnings.warn(
f'When align_corners={align_corners}, '
'the output would more aligned if '
f'input size {(input_h, input_w)} is `x+1` and '
f'out size {(output_h, output_w)} is `nx+1`')
return F.interpolate(input, size, scale_factor, mode, align_corners)
def flip_back(output_flipped, flip_pairs, target_type='GaussianHeatmap'):
"""Flip the flipped heatmaps back to the original form.
Note:
- batch_size: N
- num_keypoints: K
- heatmap height: H
- heatmap width: W
Args:
output_flipped (np.ndarray[N, K, H, W]): The output heatmaps obtained
from the flipped images.
flip_pairs (list[tuple()): Pairs of keypoints which are mirrored
(for example, left ear -- right ear).
target_type (str): GaussianHeatmap or CombinedTarget
Returns:
np.ndarray: heatmaps that flipped back to the original image
"""
assert len(output_flipped.shape) == 4, \
'output_flipped should be [batch_size, num_keypoints, height, width]'
shape_ori = output_flipped.shape
channels = 1
if target_type.lower() == 'CombinedTarget'.lower():
channels = 3
output_flipped[:, 1::3, ...] = -output_flipped[:, 1::3, ...]
output_flipped = output_flipped.reshape((shape_ori[0], -1, channels,
shape_ori[2], shape_ori[3]))
output_flipped_back = output_flipped.clone()
# Swap left-right parts
for left, right in flip_pairs:
output_flipped_back[:, left, ...] = output_flipped[:, right, ...]
output_flipped_back[:, right, ...] = output_flipped[:, left, ...]
output_flipped_back = output_flipped_back.reshape(shape_ori)
# Flip horizontally
output_flipped_back = output_flipped_back[..., ::-1]
return output_flipped_back
......@@ -50,7 +50,7 @@ def layerwise_lr_decay(decay_rate, name_dict, n_layers, param):
layer = int(static_name[idx:].split('.')[1])
ratio = decay_rate**(n_layers - layer)
elif 'cls_token' in static_name or 'patch_embed' in static_name:
elif 'cls_token' in static_name or 'patch_embed' in static_name or 'pos_embed' in static_name:
ratio = decay_rate**(n_layers + 1)
if IS_PADDLE_LATER_2_4:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册