提交 f6543a11 编写于 作者: S Siddharth Goyal 提交者: daminglu

[Test-driven] Implementing sentiment_analysis with new API (#10812)

上级 f0c4088a
...@@ -9,3 +9,4 @@ endforeach() ...@@ -9,3 +9,4 @@ endforeach()
add_subdirectory(fit_a_line) add_subdirectory(fit_a_line)
add_subdirectory(recognize_digits) add_subdirectory(recognize_digits)
add_subdirectory(image_classification) add_subdirectory(image_classification)
add_subdirectory(understand_sentiment)
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
# default test
foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
endforeach()
...@@ -17,11 +17,13 @@ from __future__ import print_function ...@@ -17,11 +17,13 @@ from __future__ import print_function
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from functools import partial from functools import partial
import numpy as np
CLASS_DIM = 2 CLASS_DIM = 2
EMB_DIM = 128 EMB_DIM = 128
HID_DIM = 512 HID_DIM = 512
STACKED_NUM = 3 STACKED_NUM = 3
BATCH_SIZE = 128
def stacked_lstm_net(data, input_dim, class_dim, emb_dim, hid_dim, stacked_num): def stacked_lstm_net(data, input_dim, class_dim, emb_dim, hid_dim, stacked_num):
...@@ -50,7 +52,7 @@ def stacked_lstm_net(data, input_dim, class_dim, emb_dim, hid_dim, stacked_num): ...@@ -50,7 +52,7 @@ def stacked_lstm_net(data, input_dim, class_dim, emb_dim, hid_dim, stacked_num):
return prediction return prediction
def inference_network(word_dict): def inference_program(word_dict):
data = fluid.layers.data( data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1) name="words", shape=[1], dtype="int64", lod_level=1)
...@@ -60,57 +62,71 @@ def inference_network(word_dict): ...@@ -60,57 +62,71 @@ def inference_network(word_dict):
return net return net
def train_network(word_dict): def train_program(word_dict):
prediction = inference_network(word_dict) prediction = inference_program(word_dict)
label = fluid.layers.data(name="label", shape=[1], dtype="int64") label = fluid.layers.data(name="label", shape=[1], dtype="int64")
cost = fluid.layers.cross_entropy(input=prediction, label=label) cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(cost) avg_cost = fluid.layers.mean(cost)
accuracy = fluid.layers.accuracy(input=prediction, label=label) accuracy = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, accuracy return [avg_cost, accuracy]
def train(use_cuda, save_path): def train(use_cuda, train_program, save_dirname):
BATCH_SIZE = 128 place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
EPOCH_NUM = 5 optimizer = fluid.optimizer.Adagrad(learning_rate=0.002)
word_dict = paddle.dataset.imdb.word_dict() word_dict = paddle.dataset.imdb.word_dict()
trainer = fluid.Trainer(
train_func=partial(train_program, word_dict),
place=place,
optimizer=optimizer)
train_data = paddle.batch( def event_handler(event):
if isinstance(event, fluid.EndEpochEvent):
test_reader = paddle.batch(
paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE)
avg_cost, acc = trainer.test(
reader=test_reader, feed_order=['words', 'label'])
print("avg_cost: %s" % avg_cost)
print("acc : %s" % acc)
if acc > 0.2: # Smaller value to increase CI speed
trainer.save_params(save_dirname)
trainer.stop()
else:
print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
event.epoch + 1, avg_cost, acc))
if math.isnan(avg_cost):
sys.exit("got NaN loss, training failed.")
elif isinstance(event, fluid.EndStepEvent):
print("Step {0}, Epoch {1} Metrics {2}".format(
event.step, event.epoch, map(np.array, event.metrics)))
if event.step == 1: # Run 2 iterations to speed CI
trainer.save_params(save_dirname)
trainer.stop()
train_reader = paddle.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
paddle.dataset.imdb.train(word_dict), buf_size=1000), paddle.dataset.imdb.train(word_dict), buf_size=25000),
batch_size=BATCH_SIZE) batch_size=BATCH_SIZE)
test_data = paddle.batch( trainer.train(
paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE) num_epochs=1,
event_handler=event_handler,
def event_handler(event): reader=train_reader,
if isinstance(event, fluid.EndIteration): feed_order=['words', 'label'])
if (event.batch_id % 10) == 0:
avg_cost, accuracy = trainer.test(reader=test_data)
print('BatchID {1:04}, Loss {2:2.2}, Acc {3:2.2}'.format(
event.batch_id + 1, avg_cost, accuracy))
if accuracy > 0.01: # Low threshold for speeding up CI def infer(use_cuda, inference_program, save_dirname=None):
trainer.params.save(save_path)
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
trainer = fluid.Trainer(
partial(train_network, word_dict),
optimizer=fluid.optimizer.Adagrad(learning_rate=0.002),
place=place,
event_handler=event_handler)
trainer.train(train_data, EPOCH_NUM, event_handler=event_handler)
def infer(use_cuda, save_path):
params = fluid.Params(save_path)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
word_dict = paddle.dataset.imdb.word_dict() word_dict = paddle.dataset.imdb.word_dict()
inferencer = fluid.Inferencer( inferencer = fluid.Inferencer(
partial(inference_network, word_dict), params, place=place) infer_func=partial(inference_program, word_dict),
param_path=save_dirname,
place=place)
def create_random_lodtensor(lod, place, low, high): def create_random_lodtensor(lod, place, low, high):
data = np.random.random_integers(low, high, data = np.random.random_integers(low, high,
...@@ -131,8 +147,8 @@ def main(use_cuda): ...@@ -131,8 +147,8 @@ def main(use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda(): if use_cuda and not fluid.core.is_compiled_with_cuda():
return return
save_path = "understand_sentiment_stacked_lstm.inference.model" save_path = "understand_sentiment_stacked_lstm.inference.model"
train(use_cuda, save_path) train(use_cuda, train_program, save_path)
infer(use_cuda, save_path) infer(use_cuda, inference_program, save_path)
if __name__ == '__main__': if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册