Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f6543a11
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f6543a11
编写于
5月 21, 2018
作者:
S
Siddharth Goyal
提交者:
daminglu
5月 21, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Test-driven] Implementing sentiment_analysis with new API (#10812)
上级
f0c4088a
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
61 addition
and
37 deletion
+61
-37
python/paddle/fluid/tests/book/high-level-api/CMakeLists.txt
python/paddle/fluid/tests/book/high-level-api/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/CMakeLists.txt
...s/book/high-level-api/understand_sentiment/CMakeLists.txt
+7
-0
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_stacked_lstm.py
...stand_sentiment/test_understand_sentiment_stacked_lstm.py
+53
-37
未找到文件。
python/paddle/fluid/tests/book/high-level-api/CMakeLists.txt
浏览文件 @
f6543a11
...
...
@@ -9,3 +9,4 @@ endforeach()
add_subdirectory
(
fit_a_line
)
add_subdirectory
(
recognize_digits
)
add_subdirectory
(
image_classification
)
add_subdirectory
(
understand_sentiment
)
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/CMakeLists.txt
0 → 100644
浏览文件 @
f6543a11
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
# default test
foreach
(
src
${
TEST_OPS
}
)
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endforeach
()
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/
no
test_understand_sentiment_stacked_lstm.py
→
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_stacked_lstm.py
浏览文件 @
f6543a11
...
...
@@ -17,11 +17,13 @@ from __future__ import print_function
import
paddle
import
paddle.fluid
as
fluid
from
functools
import
partial
import
numpy
as
np
CLASS_DIM
=
2
EMB_DIM
=
128
HID_DIM
=
512
STACKED_NUM
=
3
BATCH_SIZE
=
128
def
stacked_lstm_net
(
data
,
input_dim
,
class_dim
,
emb_dim
,
hid_dim
,
stacked_num
):
...
...
@@ -50,7 +52,7 @@ def stacked_lstm_net(data, input_dim, class_dim, emb_dim, hid_dim, stacked_num):
return
prediction
def
inference_
network
(
word_dict
):
def
inference_
program
(
word_dict
):
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
...
...
@@ -60,57 +62,71 @@ def inference_network(word_dict):
return
net
def
train_
network
(
word_dict
):
prediction
=
inference_
network
(
word_dict
)
def
train_
program
(
word_dict
):
prediction
=
inference_
program
(
word_dict
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
accuracy
return
[
avg_cost
,
accuracy
]
def
train
(
use_cuda
,
save_path
):
BATCH_SIZE
=
128
EPOCH_NUM
=
5
def
train
(
use_cuda
,
train_program
,
save_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
0.002
)
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
trainer
=
fluid
.
Trainer
(
train_func
=
partial
(
train_program
,
word_dict
),
place
=
place
,
optimizer
=
optimizer
)
train_data
=
paddle
.
batch
(
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imdb
.
test
(
word_dict
),
batch_size
=
BATCH_SIZE
)
avg_cost
,
acc
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'words'
,
'label'
])
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
if
acc
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save_dirname
)
trainer
.
stop
()
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
avg_cost
,
acc
))
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
elif
isinstance
(
event
,
fluid
.
EndStepEvent
):
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
np
.
array
,
event
.
metrics
)))
if
event
.
step
==
1
:
# Run 2 iterations to speed CI
trainer
.
save_params
(
save_dirname
)
trainer
.
stop
()
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
buf_size
=
1
000
),
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
buf_size
=
25
000
),
batch_size
=
BATCH_SIZE
)
test_data
=
paddle
.
batch
(
paddle
.
dataset
.
imdb
.
test
(
word_dict
),
batch_size
=
BATCH_SIZE
)
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndIteration
):
if
(
event
.
batch_id
%
10
)
==
0
:
avg_cost
,
accuracy
=
trainer
.
test
(
reader
=
test_data
)
trainer
.
train
(
num_epochs
=
1
,
event_handler
=
event_handler
,
reader
=
train_reader
,
feed_order
=
[
'words'
,
'label'
])
print
(
'BatchID {1:04}, Loss {2:2.2}, Acc {3:2.2}'
.
format
(
event
.
batch_id
+
1
,
avg_cost
,
accuracy
))
if
accuracy
>
0.01
:
# Low threshold for speeding up CI
trainer
.
params
.
save
(
save_path
)
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
partial
(
train_network
,
word_dict
),
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
0.002
),
place
=
place
,
event_handler
=
event_handler
)
trainer
.
train
(
train_data
,
EPOCH_NUM
,
event_handler
=
event_handler
)
def
infer
(
use_cuda
,
save_path
):
params
=
fluid
.
Params
(
save_path
)
def
infer
(
use_cuda
,
inference_program
,
save_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
inferencer
=
fluid
.
Inferencer
(
partial
(
inference_network
,
word_dict
),
params
,
place
=
place
)
infer_func
=
partial
(
inference_program
,
word_dict
),
param_path
=
save_dirname
,
place
=
place
)
def
create_random_lodtensor
(
lod
,
place
,
low
,
high
):
data
=
np
.
random
.
random_integers
(
low
,
high
,
...
...
@@ -131,8 +147,8 @@ def main(use_cuda):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"understand_sentiment_stacked_lstm.inference.model"
train
(
use_cuda
,
save_path
)
infer
(
use_cuda
,
save_path
)
train
(
use_cuda
,
train_program
,
save_path
)
infer
(
use_cuda
,
inference_program
,
save_path
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录