Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f52b514d
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f52b514d
编写于
12月 27, 2018
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
call kernel
上级
4e80e04f
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
114 addition
and
48 deletion
+114
-48
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+7
-4
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+3
-2
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+19
-11
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+59
-14
paddle/fluid/imperative/tracer.h
paddle/fluid/imperative/tracer.h
+19
-10
paddle/fluid/operators/fill_constant_op.cc
paddle/fluid/operators/fill_constant_op.cc
+2
-1
python/paddle/fluid/layer_helper.py
python/paddle/fluid/layer_helper.py
+2
-0
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+3
-6
未找到文件。
paddle/fluid/framework/operator.cc
浏览文件 @
f52b514d
...
...
@@ -179,7 +179,7 @@ void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
VLOG
(
3
)
<<
place
<<
" "
<<
DebugStringEx
(
&
scope
);
}
void
OperatorBase
::
Run
(
const
RuntimeContext
&
ctx
,
void
OperatorBase
::
Run
Prepared
(
const
RuntimeContext
&
ctx
,
const
platform
::
Place
&
place
)
{
RunImplPrepared
(
ctx
,
place
);
}
...
...
@@ -1092,7 +1092,9 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
const
ExecutionContext
&
ctx
)
const
{
int
data_type
=
-
1
;
for
(
auto
&
input
:
this
->
inputs_
)
{
for
(
const
Variable
*
var
:
ctx
.
MultiInputVar
(
input
.
first
))
{
const
std
::
vector
<
const
Variable
*>
vars
=
ctx
.
MultiInputVar
(
input
.
first
);
for
(
size_t
i
=
0
;
i
<
vars
.
size
();
++
i
)
{
const
Variable
*
var
=
vars
[
i
];
if
(
var
!=
nullptr
)
{
const
Tensor
*
t
=
nullptr
;
if
(
var
->
IsType
<
Tensor
>
())
{
...
...
@@ -1103,7 +1105,8 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
t
=
&
(
var
->
Get
<
SelectedRows
>
().
value
());
}
if
(
t
!=
nullptr
)
{
PADDLE_ENFORCE
(
t
->
IsInitialized
(),
"Input is not initialized"
);
PADDLE_ENFORCE
(
t
->
IsInitialized
(),
"Input %s(%lu)is not initialized"
,
input
.
first
,
i
);
int
tmp
=
static_cast
<
int
>
(
t
->
type
());
PADDLE_ENFORCE
(
tmp
==
data_type
||
data_type
==
-
1
,
...
...
paddle/fluid/framework/operator.h
浏览文件 @
f52b514d
...
...
@@ -105,7 +105,7 @@ class OperatorBase {
/// Executor will call this interface function to Run an op.
// The implementation should be written at RunImpl
void
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
);
void
Run
(
const
RuntimeContext
&
ctx
,
const
platform
::
Place
&
place
);
void
Run
Prepared
(
const
RuntimeContext
&
ctx
,
const
platform
::
Place
&
place
);
// FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
virtual
void
Stop
()
{}
...
...
@@ -457,8 +457,9 @@ class OperatorWithKernel : public OperatorBase {
void
RuntimeInferShape
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
,
const
RuntimeContext
&
ctx
)
const
override
;
protected:
virtual
OpKernelType
GetExpectedKernelType
(
const
ExecutionContext
&
ctx
)
const
;
protected:
virtual
OpKernelType
GetKernelTypeForVar
(
const
std
::
string
&
var_name
,
const
Tensor
&
tensor
,
const
OpKernelType
&
expected_kernel_type
)
const
;
...
...
paddle/fluid/imperative/layer.cc
浏览文件 @
f52b514d
...
...
@@ -45,12 +45,6 @@ class Autograd {
Autograd
()
{}
void
RunBackward
(
VarBase
*
var
)
{
PADDLE_ENFORCE
(
var
->
pre_op_
->
op_desc_
);
PADDLE_ENFORCE
(
var
->
grads_
==
var
->
pre_op_
->
output_vars_
[
var
->
pre_op_out_name_
][
var
->
pre_op_out_idx_
]
->
grads_
);
std
::
deque
<
OpBase
*>
ready
;
ready
.
push_back
(
var
->
pre_op_
);
...
...
@@ -66,7 +60,7 @@ class Autograd {
const
std
::
vector
<
VarBase
*>&
ingrads
=
it
.
second
;
for
(
size_t
i
=
0
;
i
<
ingrads
.
size
();
++
i
)
{
if
(
!
ingrads
[
i
])
continue
;
OpBase
*
pre_op
=
(
*
ready_op
->
pre_ops_
)
[
it
.
first
][
i
];
OpBase
*
pre_op
=
ready_op
->
pre_ops_
[
it
.
first
][
i
];
if
(
!
pre_op
)
continue
;
dep_counts
[
pre_op
]
-=
1
;
...
...
@@ -91,7 +85,7 @@ class Autograd {
while
(
!
queue
.
empty
())
{
OpBase
*
candidate
=
queue
.
front
();
queue
.
pop_front
();
for
(
auto
it
:
*
(
candidate
->
pre_ops_
)
)
{
for
(
auto
it
:
candidate
->
pre_ops_
)
{
for
(
OpBase
*
pre_op
:
it
.
second
)
{
if
(
!
pre_op
)
continue
;
if
(
visited
.
find
(
pre_op
)
==
visited
.
end
())
{
...
...
@@ -138,11 +132,13 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
}
VLOG
(
3
)
<<
"op grad "
<<
grad_op_desc_
->
Type
();
std
::
vector
<
std
::
unique_ptr
<
framework
::
Variable
>>
tmp_vars
;
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
Variable
*>>
grad_outputs
;
for
(
auto
it
:
grad_output_vars_
)
{
auto
&
outputs
=
grad_outputs
[
it
.
first
];
for
(
size_t
i
=
0
;
i
<
it
.
second
.
size
();
++
i
)
{
outputs
.
push_back
(
new
framework
::
Variable
());
tmp_vars
.
emplace_back
(
new
framework
::
Variable
());
outputs
.
push_back
(
tmp_vars
.
back
().
get
());
outputs
.
back
()
->
GetMutable
<
framework
::
LoDTensor
>
();
}
}
...
...
@@ -155,7 +151,15 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
std
::
unique_ptr
<
framework
::
OperatorBase
>
opbase
=
framework
::
OpRegistry
::
CreateOp
(
*
grad_op_desc_
);
opbase
->
Run
(
ctx
,
platform
::
CPUPlace
());
framework
::
OperatorWithKernel
*
op_kernel
=
dynamic_cast
<
framework
::
OperatorWithKernel
*>
(
opbase
.
get
());
PADDLE_ENFORCE_NOT_NULL
(
op_kernel
,
"only support op with kernel"
);
framework
::
Scope
scope
;
platform
::
CPUPlace
place
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place
);
p
.
op
.
RuntimeInferShape
(
scope
,
place
,
ctx
);
p
.
func
(
framework
::
ExecutionContext
(
p
.
op
,
scope
,
*
p
.
dev_ctx
,
p
.
ctx
));
for
(
auto
it
:
grad_output_vars_
)
{
auto
&
outputs
=
grad_outputs
[
it
.
first
];
...
...
@@ -169,11 +173,15 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
}
void
VarBase
::
RunBackward
()
{
if
(
!
pre_op_
)
return
;
auto
grads_t
=
grads_
->
GetMutable
<
framework
::
LoDTensor
>
();
float
*
data
=
grads_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
std
::
fill
(
data
,
data
+
grads_t
->
numel
(),
1.0
);
if
(
!
pre_op_
)
return
;
PADDLE_ENFORCE
(
grads_
==
pre_op_
->
output_vars_
[
pre_op_out_name_
][
pre_op_out_idx_
]
->
grads_
);
Autograd
().
RunBackward
(
this
);
}
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
f52b514d
...
...
@@ -25,6 +25,59 @@
namespace
paddle
{
namespace
imperative
{
class
PreparedOp
{
public:
PreparedOp
(
const
framework
::
OperatorBase
&
op
,
const
framework
::
RuntimeContext
&
ctx
,
framework
::
OperatorWithKernel
::
OpKernelFunc
func
,
platform
::
DeviceContext
*
dev_ctx
)
:
op
(
op
),
ctx
(
ctx
),
func
(
func
),
dev_ctx
(
dev_ctx
)
{}
static
PreparedOp
Prepare
(
const
framework
::
RuntimeContext
&
ctx
,
const
framework
::
OperatorWithKernel
&
op
,
const
platform
::
Place
&
place
)
{
framework
::
Scope
dummy_scope
;
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
// check if op[type] has kernel registered.
auto
&
all_op_kernels
=
op
.
AllOpKernels
();
auto
kernels_iter
=
all_op_kernels
.
find
(
op
.
Type
());
if
(
kernels_iter
==
all_op_kernels
.
end
())
{
PADDLE_THROW
(
"There are no kernels which are registered in the %s operator."
,
op
.
Type
());
}
framework
::
OperatorWithKernel
::
OpKernelMap
&
kernels
=
kernels_iter
->
second
;
auto
expected_kernel_key
=
op
.
GetExpectedKernelType
(
framework
::
ExecutionContext
(
op
,
dummy_scope
,
*
dev_ctx
,
ctx
));
VLOG
(
3
)
<<
"expected_kernel_key:"
<<
expected_kernel_key
;
auto
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
#ifdef PADDLE_WITH_MKLDNN
// workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
if
(
kernel_iter
==
kernels
.
end
()
&&
expected_kernel_key
.
library_type_
==
framework
::
LibraryType
::
kMKLDNN
)
{
VLOG
(
3
)
<<
"missing MKLDNN kernel: fallbacking to PLAIN one"
;
expected_kernel_key
.
library_type_
=
framework
::
LibraryType
::
kPlain
;
expected_kernel_key
.
data_layout_
=
framework
::
DataLayout
::
kAnyLayout
;
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
}
#endif
if
(
kernel_iter
==
kernels
.
end
())
{
PADDLE_THROW
(
"op %s does not have kernel for %s"
,
op
.
Type
(),
KernelTypeToString
(
expected_kernel_key
));
}
return
PreparedOp
(
op
,
ctx
,
kernel_iter
->
second
,
dev_ctx
);
}
const
framework
::
OperatorBase
&
op
;
const
framework
::
RuntimeContext
&
ctx
;
framework
::
OperatorWithKernel
::
OpKernelFunc
func
;
platform
::
DeviceContext
*
dev_ctx
;
};
class
OpBase
;
class
VarBase
{
...
...
@@ -62,30 +115,22 @@ class VarBase {
class
OpBase
{
public:
OpBase
()
:
pre_ops_
(
new
std
::
map
<
std
::
string
,
std
::
vector
<
OpBase
*>>
()),
pre_ops_out_idx_
(
new
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
()),
op_desc_
(
nullptr
),
grad_op_desc_
(
nullptr
)
{}
OpBase
()
:
op_desc_
(
nullptr
),
grad_op_desc_
(
nullptr
)
{}
virtual
~
OpBase
()
{
delete
pre_ops_
;
delete
pre_ops_out_idx_
;
if
(
grad_op_desc_
)
delete
grad_op_desc_
;
if
(
grad_to_var_
)
delete
grad_to_var_
;
}
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
ApplyGrad
();
framework
::
OpDesc
*
op_desc_
;
framework
::
OpDesc
*
grad_op_desc_
;
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
input_vars_
;
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
output_vars_
;
std
::
map
<
std
::
string
,
std
::
vector
<
OpBase
*>>*
pre_ops_
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>*
pre_ops_out_idx_
;
framework
::
OpDesc
*
op_desc_
;
std
::
map
<
std
::
string
,
std
::
vector
<
OpBase
*>>
pre_ops_
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
pre_ops_out_idx_
;
framework
::
OpDesc
*
grad_op_desc_
;
std
::
unordered_map
<
std
::
string
,
std
::
string
>*
grad_to_var_
;
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
Variable
*>>
grad_input_vars_
;
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
Variable
*>>
grad_output_vars_
;
framework
::
BlockDesc
*
block_
;
...
...
paddle/fluid/imperative/tracer.h
浏览文件 @
f52b514d
...
...
@@ -82,10 +82,10 @@ class Tracer {
invars
.
push_back
(
inp
->
var_
);
vars
[
inp
->
var_desc_
->
Name
()]
=
inp
;
if
(
inp
->
pre_op_
)
{
(
*
op
->
pre_ops_
)
[
it
.
first
].
push_back
(
inp
->
pre_op_
);
(
*
op
->
pre_ops_out_idx_
)
[
it
.
first
].
push_back
(
inp
->
pre_op_out_idx_
);
op
->
pre_ops_
[
it
.
first
].
push_back
(
inp
->
pre_op_
);
op
->
pre_ops_out_idx_
[
it
.
first
].
push_back
(
inp
->
pre_op_out_idx_
);
}
else
{
(
*
op
->
pre_ops_
)
[
it
.
first
].
push_back
(
nullptr
);
op
->
pre_ops_
[
it
.
first
].
push_back
(
nullptr
);
}
VLOG
(
3
)
<<
"input vname "
<<
inp
->
var_desc_
->
Name
()
<<
" "
<<
inp
->
var_
->
IsInitialized
();
...
...
@@ -118,24 +118,33 @@ class Tracer {
VLOG
(
3
)
<<
"tracer running "
<<
op_desc
->
Type
();
framework
::
RuntimeContext
ctx
(
invars_map
,
outvars_map
);
op_base
->
Run
(
ctx
,
platform
::
CPUPlace
());
// op_base->RunPrepared(ctx, platform::CPUPlace());
// TODO(panyx0718): Cache p.
framework
::
OperatorWithKernel
*
op_kernel
=
dynamic_cast
<
framework
::
OperatorWithKernel
*>
(
op_base
.
get
());
PADDLE_ENFORCE_NOT_NULL
(
op_kernel
,
"only support op with kernel"
);
framework
::
Scope
scope
;
platform
::
CPUPlace
place
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place
);
p
.
op
.
RuntimeInferShape
(
scope
,
place
,
ctx
);
p
.
func
(
framework
::
ExecutionContext
(
p
.
op
,
scope
,
*
p
.
dev_ctx
,
p
.
ctx
));
if
(
block
==
startup_block_
)
{
op
->
grad_op_desc_
=
nullptr
;
op
->
grad_to_var_
=
nullptr
;
}
else
{
framework
::
OpDesc
*
grad_op_desc
;
auto
grad_to_var
=
new
std
::
unordered_map
<
std
::
string
,
std
::
string
>
();
CreateGradOp
(
*
op_desc
,
{},
{
block
},
&
grad_op_desc
,
grad_to_var
);
op
->
grad_op_desc_
=
grad_op_desc
;
op
->
grad_to_var_
=
grad_to_var
;
for
(
auto
it
:
grad_op_desc
->
Inputs
())
{
auto
&
grad_in_vars
=
op
->
grad_input_vars_
[
it
.
first
];
for
(
const
std
::
string
&
grad_invar
:
it
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
grad_invar
);
auto
var_it
=
op
->
grad_to_var_
->
find
(
grad_invar
);
if
(
var_it
==
op
->
grad_to_var_
->
end
())
{
auto
var_it
=
grad_to_var
->
find
(
grad_invar
);
if
(
var_it
==
grad_to_var
->
end
())
{
auto
fwd_var_it
=
vars
.
find
(
grad_invar
);
PADDLE_ENFORCE
(
fwd_var_it
!=
vars
.
end
());
grad_in_vars
.
push_back
(
fwd_var_it
->
second
->
var_
);
...
...
@@ -152,8 +161,8 @@ class Tracer {
auto
&
grad_out_vars
=
op
->
grad_output_vars_
[
it
.
first
];
for
(
const
std
::
string
&
grad_outvar
:
it
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
grad_outvar
);
auto
var_it
=
op
->
grad_to_var_
->
find
(
grad_outvar
);
PADDLE_ENFORCE
(
var_it
!=
op
->
grad_to_var_
->
end
());
auto
var_it
=
grad_to_var
->
find
(
grad_outvar
);
PADDLE_ENFORCE
(
var_it
!=
grad_to_var
->
end
());
VarBase
*
var
=
vars
[
var_it
->
second
];
if
(
!
var
->
grads_
->
IsInitialized
())
{
InitVar
(
var
->
var_
,
var
->
grads_
);
...
...
paddle/fluid/operators/fill_constant_op.cc
浏览文件 @
f52b514d
...
...
@@ -86,4 +86,5 @@ REGISTER_OPERATOR(fill_constant, ops::FillConstantOp, ops::FillConstantOpMaker,
REGISTER_OP_CPU_KERNEL
(
fill_constant
,
ops
::
FillConstantKernel
<
float
>
,
ops
::
FillConstantKernel
<
double
>
,
ops
::
FillConstantKernel
<
int64_t
>
);
ops
::
FillConstantKernel
<
int64_t
>
,
ops
::
FillConstantKernel
<
int
>
);
python/paddle/fluid/layer_helper.py
浏览文件 @
f52b514d
...
...
@@ -316,6 +316,8 @@ class LayerHelper(object):
if
_in_imperative_mode
():
self
.
main_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
_to_kwargs
())
# In imperative mode, we want the returned parameter to be
# initialized so that it can be used imperatively.
return
self
.
startup_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
...
...
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
f52b514d
...
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
contextlib
import
unittest
import
numpy
as
np
...
...
@@ -82,12 +81,10 @@ class TestImperative(unittest.TestCase):
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
3
],
append_batch_size
=
False
)
x
=
fluid
.
layers
.
relu
(
inp
)
x_for_debug
=
x
x
=
fluid
.
layers
.
elementwise_mul
(
x
,
x
)
x
=
fluid
.
layers
.
reduce_sum
(
x
)
l
=
MyLayer
()
x
=
l
(
inp
)[
0
]
param_grads
=
fluid
.
backward
.
append_backward
(
x
,
parameter_list
=
[
x_for_debug
.
name
])[
0
]
x
,
parameter_list
=
[
l
.
_
x_for_debug
.
name
])[
0
]
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
static_out
,
static_grad
=
exe
.
run
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录