From f4710cf0e210f65357b0c9ebc871602addac4131 Mon Sep 17 00:00:00 2001 From: dzhwinter Date: Mon, 30 Oct 2017 14:45:57 -0700 Subject: [PATCH] "add sequence conv layer" (#5117) * "add sequence conv layer" * "add sequence layer" * add networks * "fix based comment" * Update layers.py --- python/paddle/v2/framework/layers.py | 85 +++++++++++++++++++++++++++- python/paddle/v2/framework/nets.py | 30 +++++++++- 2 files changed, 112 insertions(+), 3 deletions(-) diff --git a/python/paddle/v2/framework/layers.py b/python/paddle/v2/framework/layers.py index 0212afec9..57723c4d5 100644 --- a/python/paddle/v2/framework/layers.py +++ b/python/paddle/v2/framework/layers.py @@ -5,7 +5,7 @@ import re __all__ = [ 'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat', - 'StaticRNN', 'cast', 'batch_norm' + 'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool' ] @@ -165,6 +165,18 @@ _create_op_func_('dropout') _create_op_func_('reshape') +def cast(x, data_type, program=None): + helper = LayerHelper('cast', **locals()) + out = helper.create_tmp_variable(dtype=data_type) + helper.append_op( + type='cast', + inputs={'X': [x]}, + outputs={'Out': [out]}, + attrs={'in_data_type': x.data_type, + 'out_data_type': out.data_type}) + return out + + def cast(x, data_type, program=None): helper = LayerHelper('cast', **locals()) out = helper.create_tmp_variable(dtype=data_type) @@ -220,6 +232,46 @@ def square_error_cost(input, label, **kwargs): return square_out +def sequence_conv(input, + num_filters, + name=None, + filter_size=3, + act=None, + stride=1, + padding=None, + bias_attr=None, + param_attr=None, + program=None, + init_program=None): + # FIXME(dzh) : want to unify the argument of python layer + # function. So we ignore some unecessary attributes. + # such as, padding_trainable, context_start. + + helper = LayerHelper('sequence_conv', **locals()) + dtype = helper.input_dtype() + + filter_shape = [num_filters, filter_size] + filter = helper.create_parameter( + attr=helper.param_attr, shape=filter_shape, dtype=dtype) + pre_bias = helper.create_tmp_variable(dtype) + + helper.append_op( + type='sequence_conv', + inputs={ + 'X': [input], + 'Filter': filter, + }, + outputs={"Out": pre_bias}, + attrs={ + 'context_stride': stride, + 'context_start': 0, + 'context_length': filter_size + }) + + pre_act = helper.append_bias_op(pre_bias) + return helper.append_activation(pre_act) + + def conv2d(input, num_filters, name=None, @@ -272,6 +324,35 @@ def conv2d(input, return helper.append_activation(pre_act) +def sequence_pool(input, + pool_size, + pool_type, + pool_stride=1, + pool_padding=0, + global_pooling=False, + program=None, + init_program=None): + # FIXME(dzh) : want to unify the argument of python layer + # function. So we ignore some unecessary attributes + + ENUM_POOL_TYPE = set(["max", "avg", "sqrt", "last", "first"]) + if pool_type not in ENUM_POOL_TYPE: + raise ValueError("Unknown pool_type: '%s'. It can only be %s.", + str(pool_type), " ".join(ENUM_POOL_TYPE)) + + helper = LayerHelper('sequence_pool', **locals()) + dtype = helper.input_dtype() + pool_out = helper.create_tmp_variable(dtype) + + helper.append_op( + type="sequence_pool", + inputs={"X": [input]}, + outputs={"Out": pool_out}, + attrs={"strategy": pool_type}) + + return pool_out + + def pool2d(input, pool_size, pool_type, @@ -291,7 +372,7 @@ def pool2d(input, if isinstance(pool_padding, int): pool_padding = [pool_padding, pool_padding] - helper = LayerHelper('conv2d', **locals()) + helper = LayerHelper('pool2d', **locals()) dtype = helper.input_dtype() pool_out = helper.create_tmp_variable(dtype) diff --git a/python/paddle/v2/framework/nets.py b/python/paddle/v2/framework/nets.py index 803534fa3..a9998073e 100644 --- a/python/paddle/v2/framework/nets.py +++ b/python/paddle/v2/framework/nets.py @@ -1,9 +1,11 @@ import paddle.v2.framework.layers as layers +__all__ = ["simple_img_conv_pool", "sequence_conv_pool"] + def simple_img_conv_pool(input, - filter_size, num_filters, + filter_size, pool_size, pool_stride, act, @@ -94,3 +96,29 @@ def img_conv_group(input, program=program, init_program=init_program) return pool_out + + +def sequence_conv_pool(input, + num_filters, + filter_size, + pool_size, + pool_stride, + act, + program=None, + init_program=None): + conv_out = layers.sequence_conv( + input=input, + num_filters=num_filters, + filter_size=filter_size, + act=act, + program=program, + init_program=init_program) + + pool_out = layers.sequence_pool( + input=conv_out, + pool_size=pool_size, + pool_type='max', + pool_stride=pool_stride, + program=program, + init_program=init_program) + return pool_out -- GitLab