提交 f044b23f 编写于 作者: Y Yang Yu

Merge branch 'develop' of github.com:baidu/Paddle into feature/add_demo_for_parallel.do

...@@ -26,8 +26,8 @@ glu ...@@ -26,8 +26,8 @@ glu
:noindex: :noindex:
dot_product_attention scaled_dot_product_attention
--------------------- ----------------------------
.. autofunction:: paddle.v2.fluid.nets.dot_product_attention .. autofunction:: paddle.v2.fluid.nets.scaled_dot_product_attention
:noindex: :noindex:
...@@ -991,8 +991,10 @@ TEST(Layer, SequenceLastInstanceLayer) { ...@@ -991,8 +991,10 @@ TEST(Layer, SequenceLastInstanceLayer) {
"seqlastins", "seqlastins",
"non-seq", "non-seq",
-1); // hasSubseq seqlastins to non-seq -1); // hasSubseq seqlastins to non-seq
testDegradeLayer( testDegradeLayer(true,
true, "seqlastins", "seq", -1); // hasSubseq seqlastins to seq "seqlastins",
"seq",
-1); // hasSubseq seqlastins to seq
} }
TEST(Layer, AverageLayer) { TEST(Layer, AverageLayer) {
...@@ -1001,8 +1003,10 @@ TEST(Layer, AverageLayer) { ...@@ -1001,8 +1003,10 @@ TEST(Layer, AverageLayer) {
"average", "average",
"non-seq", "non-seq",
5); // seq average to a shorten seq, stride window = 5 5); // seq average to a shorten seq, stride window = 5
testDegradeLayer( testDegradeLayer(true,
true, "average", "non-seq", -1); // hasSubseq average to non-seq "average",
"non-seq",
-1); // hasSubseq average to non-seq
testDegradeLayer(true, "average", "seq", -1); // hasSubseq average to seq testDegradeLayer(true, "average", "seq", -1); // hasSubseq average to seq
} }
...@@ -1287,8 +1291,9 @@ TEST(Layer, PoolLayer) { ...@@ -1287,8 +1291,9 @@ TEST(Layer, PoolLayer) {
testPoolLayer("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true); testPoolLayer("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true);
testPoolLayer2("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true); testPoolLayer2("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true);
testPoolLayer2("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true); testPoolLayer2("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true);
testPoolLayer2( testPoolLayer2("cudnn-avg-incl-pad-pool",
"cudnn-avg-incl-pad-pool", /* trans= */ false, /* useGpu= */ true); /* trans= */ false,
/* useGpu= */ true);
testPoolLayer("max-pool-with-mask", /* trans= */ false, /* useGpu= */ true); testPoolLayer("max-pool-with-mask", /* trans= */ false, /* useGpu= */ true);
#endif #endif
} }
...@@ -2431,18 +2436,21 @@ TEST(Layer, test3DDeConvLayer) { ...@@ -2431,18 +2436,21 @@ TEST(Layer, test3DDeConvLayer) {
} }
TEST(Layer, ScaleShiftLayer) { TEST(Layer, ScaleShiftLayer) {
const size_t batchSize = 16; // FIXME: Disable ScaleShiftLayer because it is not stable.
const size_t size = 32; // https://github.com/PaddlePaddle/Paddle/issues/7781
TestConfig config; return;
config.layerConfig.set_type("scale_shift"); // const size_t batchSize = 16;
config.layerConfig.set_size(size); // const size_t size = 32;
config.biasSize = 1; // TestConfig config;
config.inputDefs.push_back( // config.layerConfig.set_type("scale_shift");
{INPUT_DATA, "input", /* dim= */ size, /* paraSize= */ 1}); // config.layerConfig.set_size(size);
config.layerConfig.add_inputs(); // config.biasSize = 1;
for (auto useGpu : {false, true}) { // config.inputDefs.push_back(
testLayerGrad(config, "scale_shift", batchSize, false, useGpu, false); // {INPUT_DATA, "input", /* dim= */ size, /* paraSize= */ 1});
} // config.layerConfig.add_inputs();
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "scale_shift", batchSize, false, useGpu, false);
// }
} }
TEST(Layer, ScaleSubRegionLayer) { TEST(Layer, ScaleSubRegionLayer) {
......
...@@ -90,14 +90,10 @@ Reshape Operator. ...@@ -90,14 +90,10 @@ Reshape Operator.
Reshape Input(X) into the shape specified by Attr(shape). Reshape Input(X) into the shape specified by Attr(shape).
An example: An example:
Given a 2-D tensor X with 2 rows and 2 columns Given a 2-D tensor X with 2 rows and 2 columns : [[1, 2], [3, 4]]
[[1, 2], [3, 4]]
and target shape = [1, 4], the reshape operator will transform and target shape = [1, 4], the reshape operator will transform
the tensor X into a 2-D tensor: the tensor X into a 2-D tensor: [[1, 2, 3, 4]]
[[1, 2, 3, 4]]
One dimension in the target shape can be set -1, representing that its One dimension in the target shape can be set -1, representing that its
size is unknown. In this case, the real dimension will be infered from size is unknown. In this case, the real dimension will be infered from
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
import os import os
import cPickle as pickle import cPickle as pickle
from paddle.v2.fluid.evaluator import Evaluator
from paddle.v2.fluid.framework import Program, Parameter, default_main_program, Variable from paddle.v2.fluid.framework import Program, Parameter, default_main_program, Variable
from . import core from . import core
...@@ -187,8 +188,14 @@ def get_inference_program(target_vars, main_program=None): ...@@ -187,8 +188,14 @@ def get_inference_program(target_vars, main_program=None):
main_program = default_main_program() main_program = default_main_program()
if not isinstance(target_vars, list): if not isinstance(target_vars, list):
target_vars = [target_vars] target_vars = [target_vars]
vars = []
pruned_program = main_program.prune(targets=target_vars) for var in target_vars:
if isinstance(var, Evaluator):
vars.append(var.states)
vars.append(var.metrics)
else:
vars.append(var)
pruned_program = main_program.prune(targets=vars)
inference_program = pruned_program.inference_optimize() inference_program = pruned_program.inference_optimize()
return inference_program return inference_program
......
此差异已折叠。
...@@ -11,14 +11,13 @@ ...@@ -11,14 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import layers import layers
__all__ = [ __all__ = [
"simple_img_conv_pool", "simple_img_conv_pool",
"sequence_conv_pool", "sequence_conv_pool",
"glu", "glu",
"dot_product_attention", "scaled_dot_product_attention",
] ]
...@@ -160,7 +159,11 @@ def glu(input, dim=-1): ...@@ -160,7 +159,11 @@ def glu(input, dim=-1):
return out return out
def dot_product_attention(querys, keys, values): def scaled_dot_product_attention(queries,
keys,
values,
num_heads=1,
dropout_rate=0.):
""" """
The dot-product attention. The dot-product attention.
...@@ -174,39 +177,162 @@ def dot_product_attention(querys, keys, values): ...@@ -174,39 +177,162 @@ def dot_product_attention(querys, keys, values):
.. math:: .. math::
Attention(Q, K, V)= softmax(QK^\mathrm{T})V Attention(Q, K, V)= softmax(QK^\mathrm{T})V
Refer to `Attention Is All You Need Refer to `Attention Is All You Need
<https://arxiv.org/pdf/1706.03762.pdf>`_. <https://arxiv.org/pdf/1706.03762.pdf>`_.
Note that batch data containing sequences with different lengths is not
supported by this because of the (batch) matrix multipication.
Args: Args:
query (Variable): The input variable which is a Tensor or LoDTensor.
key (Variable): The input variable which is a Tensor or LoDTensor. queries (Variable): The input variable which should be a 3-D Tensor.
value (Variable): The input variable which is a Tensor or LoDTensor. keys (Variable): The input variable which should be a 3-D Tensor.
values (Variable): The input variable which should be a 3-D Tensor.
num_heads (int): Head number to compute the scaled dot product
attention. Default value is 1.
dropout_rate (float): The dropout rate to drop the attention weight.
Default value is 0.
Returns: Returns:
tuple: The Tensor variables representing the output and attention scores.
Variable: A 3-D Tensor computed by multi-head scaled dot product
attention.
Raises:
ValueError: If input queries, keys, values are not 3-D Tensors.
NOTE:
1. When num_heads > 1, three linear projections are learned respectively
to map input queries, keys and values into queries', keys' and values'.
queries', keys' and values' have the same shapes with queries, keys
and values.
1. When num_heads == 1, scaled_dot_product_attention has no learnable
parameters.
Examples: Examples:
.. code-block:: python .. code-block:: python
# Suppose q, k, v are tensor variables with the following shape: # Suppose q, k, v are Tensors with the following shape:
# q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10] # q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10]
out, attn_scores = fluid.nets.dot_product_attention(q, k, v)
out.shape # [3, 5, 10] contexts = fluid.nets.scaled_dot_product_attention(q, k, v)
attn_scores.shape # [3, 5, 6] contexts.shape # [3, 5, 10]
"""
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError(
"Inputs quries, keys and values should all be 3-D tensors.")
if queries.shape[-1] != keys.shape[-1]:
raise ValueError(
"The hidden size of queries and keys should be the same.")
if keys.shape[-2] != values.shape[-2]:
raise ValueError(
"The max sequence length in query batch and in key batch "
"should be the same.")
if keys.shape[-1] % num_heads != 0:
raise ValueError("The hidden size of keys (%d) must be divisible "
"by the number of attention heads (%d)." %
(keys.shape[-1], num_heads))
if values.shape[-1] % num_heads != 0:
raise ValueError("The hidden size of values (%d) must be divisible "
"by the number of attention heads (%d)." %
(values.shape[-1], num_heads))
def __compute_qkv(queries, keys, values, num_heads):
"""
Add linear projection to queries, keys, and values.
Args:
queries(Tensor): a 3-D input Tensor.
keys(Tensor): a 3-D input Tensor.
values(Tensor): a 3-D input Tensor.
num_heads(int): The number of heads. Linearly project the inputs
ONLY when num_heads > 1.
Returns:
Tensor: linearly projected output Tensors: queries', keys' and
values'. They have the same shapes with queries, keys and
values.
"""
if num_heads == 1:
return queries, keys, values
q = layers.fc(input=queries, size=queries.shape[-1], num_flatten_dims=2)
k = layers.fc(input=keys, size=keys.shape[-1], num_flatten_dims=2)
v = layers.fc(input=values, size=values.shape[-1], num_flatten_dims=2)
return q, k, v
def __split_heads(x, num_heads):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions.
Args:
x(Tensor): a 3-D input Tensor.
num_heads(int): The number of heads.
Returns:
Tensor: a Tensor with shape [..., n, m/num_heads], where m is size
of the last dimension of x.
"""
if num_heads == 1:
return x
hidden_size = x.shape[-1]
# reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
# into a 4-D output:
# [batch_size, max_sequence_length, num_heads, hidden_size_per_head].
reshaped = layers.reshape(
x=x,
shape=list(x.shape[:-1]) + [num_heads, hidden_size // num_heads])
# permuate the dimensions into:
# [batch_size, num_heads, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Reshape the last two dimensions of inpunt tensor x so that it becomes
one dimension.
Args:
x(Tensor): a 4-D input Tensor with shape
[bs, num_heads, max_sequence_length, hidden_dim].
Returns:
Tensor: a Tensor with shape
[bs, max_sequence_length, num_heads * hidden_dim].
""" """
assert keys.shape[-2] == values.shape[
-2], 'The shapes of keys and values mismatch.' if len(x.shape) == 3: return x
assert querys.shape[-1] == keys.shape[ if len(x.shape) != 4:
-1], 'The shapes of querys and keys mismatch.' raise ValueError("Input(x) should be a 4-D Tensor.")
product = layers.matmul(x=querys, y=keys, transpose_y=True)
attn_scores = layers.reshape( trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
return layers.reshape(
x=trans_x,
shape=map(int, [
trans_x.shape[0], trans_x.shape[1],
trans_x.shape[2] * trans_x.shape[3]
]))
q, k, v = __compute_qkv(queries, keys, values, num_heads)
q = __split_heads(q, num_heads)
k = __split_heads(k, num_heads)
v = __split_heads(v, num_heads)
key_dim_per_head = keys.shape[-1] // num_heads
scaled_q = layers.scale(x=q, scale=key_dim_per_head**-0.5)
product = layers.matmul(x=k, y=scaled_q, transpose_y=True)
weights = layers.reshape(
x=layers.reshape( x=layers.reshape(
x=product, shape=[-1, product.shape[-1]], act='softmax'), x=product, shape=[-1, product.shape[-1]], act="softmax"),
shape=product.shape) shape=product.shape)
out = layers.matmul(attn_scores, values) if dropout_rate:
return out, attn_scores weights = layers.dropout(x, dropout_prob=dropout_rate, is_test=False)
ctx_multiheads = layers.matmul(weights, v)
return __combine_heads(ctx_multiheads)
文件模式从 100755 更改为 100644
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
import numpy as np
class TestMultiheadAttention(unittest.TestCase):
def gen_random_input(self):
"""Generate random input data.
"""
# batch_size, max_sequence_length, hidden dimension
self.input_shape = (3, 13, 16)
self.queries = np.random.random(size=self.input_shape).astype("float32")
self.keys = np.random.random(size=self.input_shape).astype("float32")
def set_program(self):
"""Build the test program.
"""
queries = fluid.layers.data(
name="queries",
shape=self.input_shape,
dtype="float32",
append_batch_size=False)
queries.stop_gradient = False
keys = fluid.layers.data(
name="keys",
shape=self.input_shape,
dtype="float32",
append_batch_size=False)
keys.stop_gradient = False
contexts = fluid.nets.scaled_dot_product_attention(
queries=queries,
keys=keys,
values=keys,
num_heads=8,
dropout_rate=0.)
out = fluid.layers.reduce_sum(contexts, dim=None)
fluid.backward.append_backward(loss=out)
self.fetch_list = [contexts]
def run_program(self):
"""Run the test program.
"""
places = [core.CPUPlace()]
if core.is_compile_gpu():
places.append(core.CUDAPlace(0))
for place in places:
self.set_inputs(place)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
output = exe.run(fluid.default_main_program(),
feed=self.inputs,
fetch_list=self.fetch_list,
return_numpy=True)
self.op_output = output
def set_inputs(self, place):
"""Set the randomly generated data to the test program.
"""
self.inputs = {}
queries = fluid.Tensor()
queries.set(self.queries, place)
keys = fluid.Tensor()
keys.set(self.keys, place)
self.inputs["keys"] = keys
self.inputs["queries"] = queries
def test_multihead_attention(self):
self.gen_random_input()
self.set_program()
self.run_program()
#fixme(caoying) add more meaningfull unittest.
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册