Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f00a4c00
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f00a4c00
编写于
12月 09, 2021
作者:
W
wangguanzhong
提交者:
GitHub
12月 09, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] fix timer in deploy (#4857)
* fix timer in deploy * fix mot_keypoint deploy
上级
d36ba700
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
308 addition
and
223 deletion
+308
-223
deploy/pptracking/python/mot_jde_infer.py
deploy/pptracking/python/mot_jde_infer.py
+23
-16
deploy/pptracking/python/mot_sde_infer.py
deploy/pptracking/python/mot_sde_infer.py
+70
-49
deploy/python/det_keypoint_unite_infer.py
deploy/python/det_keypoint_unite_infer.py
+10
-2
deploy/python/infer.py
deploy/python/infer.py
+55
-55
deploy/python/keypoint_infer.py
deploy/python/keypoint_infer.py
+24
-24
deploy/python/mot_jde_infer.py
deploy/python/mot_jde_infer.py
+33
-19
deploy/python/mot_keypoint_unite_infer.py
deploy/python/mot_keypoint_unite_infer.py
+16
-9
deploy/python/mot_sde_infer.py
deploy/python/mot_sde_infer.py
+77
-49
未找到文件。
deploy/pptracking/python/mot_jde_infer.py
浏览文件 @
f00a4c00
...
...
@@ -121,32 +121,32 @@ class JDE_Detector(Detector):
online_scores
[
cls_id
].
append
(
tscore
)
return
online_tlwhs
,
online_scores
,
online_ids
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image_list (list[str]): path of images, only support one image path
(batch_size=1) in tracking model
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
online_tlwhs, online_scores, online_ids (dict[np.array])
'''
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image_list
)
self
.
det_times
.
preprocess_time_s
.
end
()
pred_dets
,
pred_embs
=
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
pred_dets
=
boxes_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
...
...
@@ -154,14 +154,16 @@ class JDE_Detector(Detector):
pred_dets
=
boxes_tensor
.
copy_to_cpu
()
embs_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
1
])
pred_embs
=
embs_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
online_tlwhs
,
online_scores
,
online_ids
=
self
.
postprocess
(
pred_dets
,
pred_embs
,
threshold
)
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
return
online_tlwhs
,
online_scores
,
online_ids
...
...
@@ -175,7 +177,12 @@ def predict_image(detector, image_list):
for
frame_id
,
img_file
in
enumerate
(
image_list
):
frame
=
cv2
.
imread
(
img_file
)
if
FLAGS
.
run_benchmark
:
detector
.
predict
([
img_file
],
FLAGS
.
threshold
,
warmup
=
10
,
repeats
=
10
)
# warmup
detector
.
predict
(
[
img_file
],
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
detector
.
predict
(
[
img_file
],
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
...
...
deploy/pptracking/python/mot_sde_infer.py
浏览文件 @
f00a4c00
...
...
@@ -154,8 +154,8 @@ class SDE_Detector(Detector):
ori_image_shape
,
threshold
=
0.5
,
scaled
=
False
,
warmup
=
0
,
repeats
=
1
):
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image_path (list[str]): path of images, only support one image path
...
...
@@ -164,43 +164,46 @@ class SDE_Detector(Detector):
threshold (float): threshold of predicted box' score
scaled (bool): whether the coords after detector outputs are scaled,
default False in jde yolov3, set True in general detector.
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
pred_dets (np.ndarray, [N, 6]): 'x,y,w,h,score,cls_id'
pred_xyxys (np.ndarray, [N, 4]): 'x1,y1,x2,y2'
'''
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image_path
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
boxes
=
boxes_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
boxes
=
boxes_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
if
len
(
boxes
)
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
pred_xyxys
=
np
.
zeros
((
1
,
4
),
dtype
=
np
.
float32
)
else
:
pred_dets
,
pred_xyxys
=
self
.
postprocess
(
boxes
,
ori_image_shape
,
threshold
,
inputs
,
scaled
=
scaled
)
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
return
pred_dets
,
pred_xyxys
...
...
@@ -284,8 +287,8 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
ori_image_shape
,
threshold
=
0.5
,
scaled
=
False
,
warmup
=
0
,
repeats
=
1
):
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image_path (list[str]): path of images, only support one image path
...
...
@@ -294,27 +297,26 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
threshold (float): threshold of predicted box' score
scaled (bool): whether the coords after detector outputs are scaled,
default False in jde yolov3, set True in general detector.
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
pred_dets (np.ndarray, [N, 6]): 'x,y,w,h,score,cls_id'
pred_xyxys (np.ndarray, [N, 4]): 'x1,y1,x2,y2'
'''
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image_path
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
np_score_list
,
np_boxes_list
=
[],
[]
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
boxes
=
boxes_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
np_score_list
.
clear
()
...
...
@@ -328,9 +330,11 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
np_boxes_list
.
append
(
self
.
predictor
.
get_output_handle
(
output_names
[
out_idx
+
num_outs
]).
copy_to_cpu
())
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
self
.
picodet_postprocess
=
PicoDetPostProcess
(
inputs
[
'image'
].
shape
[
2
:],
inputs
[
'im_shape'
],
...
...
@@ -346,6 +350,7 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
else
:
pred_dets
,
pred_xyxys
=
self
.
postprocess
(
boxes
,
ori_image_shape
,
threshold
)
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
...
...
@@ -503,40 +508,41 @@ class SDE_ReID(object):
def
predict
(
self
,
crops
,
pred_dets
,
warmup
=
0
,
repeats
=
1
,
add_timer
=
True
,
MTMCT
=
False
,
frame_id
=
0
,
seq_name
=
''
):
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
crops
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
feature_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
pred_embs
=
feature_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
feature_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
pred_embs
=
feature_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
if
MTMCT
==
False
:
tracking_outs
=
self
.
postprocess
(
pred_dets
,
pred_embs
)
else
:
tracking_outs
=
self
.
postprocess_mtmct
(
pred_dets
,
pred_embs
,
frame_id
,
seq_name
)
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
...
...
@@ -549,13 +555,23 @@ def predict_image(detector, reid_model, image_list):
frame
=
cv2
.
imread
(
img_file
)
ori_image_shape
=
list
(
frame
.
shape
[:
2
])
if
FLAGS
.
run_benchmark
:
# warmup
pred_dets
,
pred_xyxys
=
detector
.
predict
(
[
img_file
],
ori_image_shape
,
FLAGS
.
threshold
,
FLAGS
.
scaled
,
warmup
=
10
,
repeats
=
10
)
repeats
=
10
,
add_timer
=
False
)
# run benchmark
pred_dets
,
pred_xyxys
=
detector
.
predict
(
[
img_file
],
ori_image_shape
,
FLAGS
.
threshold
,
FLAGS
.
scaled
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
...
...
@@ -574,8 +590,13 @@ def predict_image(detector, reid_model, image_list):
crops
=
reid_model
.
get_crops
(
pred_xyxys
,
frame
)
if
FLAGS
.
run_benchmark
:
# warmup
tracking_outs
=
reid_model
.
predict
(
crops
,
pred_dets
,
warmup
=
10
,
repeats
=
10
)
crops
,
pred_dets
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
tracking_outs
=
reid_model
.
predict
(
crops
,
pred_dets
,
repeats
=
10
,
add_timer
=
True
)
else
:
tracking_outs
=
reid_model
.
predict
(
crops
,
pred_dets
)
...
...
deploy/python/det_keypoint_unite_infer.py
浏览文件 @
f00a4c00
...
...
@@ -68,8 +68,12 @@ def predict_with_given_det(image, det_res, keypoint_detector,
batch_images
=
rec_images
[
start_index
:
end_index
]
batch_records
=
np
.
array
(
records
[
start_index
:
end_index
])
if
run_benchmark
:
# warmup
keypoint_result
=
keypoint_detector
.
predict
(
batch_images
,
keypoint_threshold
,
warmup
=
10
,
repeats
=
10
)
batch_images
,
keypoint_threshold
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
keypoint_result
=
keypoint_detector
.
predict
(
batch_images
,
keypoint_threshold
,
repeats
=
10
,
add_timer
=
True
)
else
:
keypoint_result
=
keypoint_detector
.
predict
(
batch_images
,
keypoint_threshold
)
...
...
@@ -100,8 +104,12 @@ def topdown_unite_predict(detector,
det_timer
.
preprocess_time_s
.
end
()
if
FLAGS
.
run_benchmark
:
# warmup
results
=
detector
.
predict
(
[
image
],
FLAGS
.
det_threshold
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
results
=
detector
.
predict
(
[
image
],
FLAGS
.
det_threshold
,
warmup
=
10
,
repeats
=
10
)
[
image
],
FLAGS
.
det_threshold
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
...
...
deploy/python/infer.py
浏览文件 @
f00a4c00
...
...
@@ -125,35 +125,33 @@ class Detector(object):
results
[
'masks'
]
=
np_masks
return
results
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image_list (list): list of image
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
MaskRCNN's results include 'masks': np.ndarray:
shape: [N, im_h, im_w]
'''
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image_list
)
self
.
det_times
.
preprocess_time_s
.
end
()
np_boxes
,
np_masks
=
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
np_boxes
=
boxes_tensor
.
copy_to_cpu
()
if
self
.
pred_config
.
mask
:
masks_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
np_masks
=
masks_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
...
...
@@ -164,9 +162,12 @@ class Detector(object):
if
self
.
pred_config
.
mask
:
masks_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
np_masks
=
masks_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
results
=
[]
if
reduce
(
lambda
x
,
y
:
x
*
y
,
np_boxes
.
shape
)
<
6
:
print
(
'[WARNNING] No object detected.'
)
...
...
@@ -174,6 +175,7 @@ class Detector(object):
else
:
results
=
self
.
postprocess
(
np_boxes
,
np_masks
,
inputs
,
np_boxes_num
,
threshold
=
threshold
)
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
len
(
image_list
)
return
results
...
...
@@ -228,35 +230,29 @@ class DetectorSOLOv2(Detector):
self
.
det_times
=
Timer
()
self
.
cpu_mem
,
self
.
gpu_mem
,
self
.
gpu_util
=
0
,
0
,
0
def
predict
(
self
,
image
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image (str/np.ndarray): path of image/ np.ndarray read by cv2
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
'cate_label': label of segm, shape:[N]
'cate_score': confidence score of segm, shape:[N]
'''
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image
)
self
.
det_times
.
preprocess_time_s
.
end
()
np_label
,
np_score
,
np_segms
=
None
,
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
np_boxes_num
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
]).
copy_to_cpu
()
np_label
=
self
.
predictor
.
get_output_handle
(
output_names
[
1
]).
copy_to_cpu
()
np_score
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
]).
copy_to_cpu
()
np_segms
=
self
.
predictor
.
get_output_handle
(
output_names
[
3
]).
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
...
...
@@ -269,6 +265,7 @@ class DetectorSOLOv2(Detector):
2
]).
copy_to_cpu
()
np_segms
=
self
.
predictor
.
get_output_handle
(
output_names
[
3
]).
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
img_num
+=
1
...
...
@@ -325,38 +322,32 @@ class DetectorPicoDet(Detector):
self
.
det_times
=
Timer
()
self
.
cpu_mem
,
self
.
gpu_mem
,
self
.
gpu_util
=
0
,
0
,
0
def
predict
(
self
,
image
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image (str/np.ndarray): path of image/ np.ndarray read by cv2
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
'''
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
np_score_list
,
np_boxes_list
=
[],
[]
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
np_score_list
.
clear
()
np_boxes_list
.
clear
()
output_names
=
self
.
predictor
.
get_output_names
()
num_outs
=
int
(
len
(
output_names
)
/
2
)
for
out_idx
in
range
(
num_outs
):
np_score_list
.
append
(
self
.
predictor
.
get_output_handle
(
output_names
[
out_idx
])
.
copy_to_cpu
())
np_boxes_list
.
append
(
self
.
predictor
.
get_output_handle
(
output_names
[
out_idx
+
num_outs
]).
copy_to_cpu
())
np_score_list
,
np_boxes_list
=
[],
[]
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
# model_prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
np_score_list
.
clear
()
...
...
@@ -370,9 +361,12 @@ class DetectorPicoDet(Detector):
np_boxes_list
.
append
(
self
.
predictor
.
get_output_handle
(
output_names
[
out_idx
+
num_outs
]).
copy_to_cpu
())
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
img_num
+=
1
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
self
.
postprocess
=
PicoDetPostProcess
(
inputs
[
'image'
].
shape
[
2
:],
inputs
[
'im_shape'
],
...
...
@@ -380,6 +374,7 @@ class DetectorPicoDet(Detector):
strides
=
self
.
pred_config
.
fpn_stride
,
nms_threshold
=
self
.
pred_config
.
nms
[
'nms_threshold'
])
np_boxes
,
np_boxes_num
=
self
.
postprocess
(
np_score_list
,
np_boxes_list
)
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
return
dict
(
boxes
=
np_boxes
,
boxes_num
=
np_boxes_num
)
...
...
@@ -647,8 +642,13 @@ def predict_image(detector, image_list, batch_size=1):
end_index
=
min
((
i
+
1
)
*
batch_size
,
len
(
image_list
))
batch_image_list
=
image_list
[
start_index
:
end_index
]
if
FLAGS
.
run_benchmark
:
# warmup
detector
.
predict
(
batch_image_list
,
FLAGS
.
threshold
,
warmup
=
10
,
repeats
=
10
)
batch_image_list
,
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
detector
.
predict
(
batch_image_list
,
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
...
...
deploy/python/keypoint_infer.py
浏览文件 @
f00a4c00
...
...
@@ -145,41 +145,33 @@ class KeyPoint_Detector(Detector):
raise
ValueError
(
"Unsupported arch: {}, expect {}"
.
format
(
self
.
pred_config
.
arch
,
KEYPOINT_SUPPORT_MODELS
))
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image_list (list): list of image
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
MaskRCNN's results include 'masks': np.ndarray:
shape: [N, im_h, im_w]
'''
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image_list
)
np_boxes
,
np_masks
=
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
np_boxes
=
boxes_tensor
.
copy_to_cpu
()
if
self
.
pred_config
.
tagmap
:
masks_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
1
])
heat_k
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
inds_k
=
self
.
predictor
.
get_output_handle
(
output_names
[
3
])
np_masks
=
[
masks_tensor
.
copy_to_cpu
(),
heat_k
.
copy_to_cpu
(),
inds_k
.
copy_to_cpu
()
]
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
...
...
@@ -193,11 +185,14 @@ class KeyPoint_Detector(Detector):
masks_tensor
.
copy_to_cpu
(),
heat_k
.
copy_to_cpu
(),
inds_k
.
copy_to_cpu
()
]
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
results
=
self
.
postprocess
(
np_boxes
,
np_masks
,
inputs
,
threshold
=
threshold
)
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
len
(
image_list
)
return
results
...
...
@@ -266,7 +261,12 @@ class PredictConfig_KeyPoint():
def
predict_image
(
detector
,
image_list
):
for
i
,
img_file
in
enumerate
(
image_list
):
if
FLAGS
.
run_benchmark
:
detector
.
predict
([
img_file
],
FLAGS
.
threshold
,
warmup
=
10
,
repeats
=
10
)
# warmup
detector
.
predict
(
[
img_file
],
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
detector
.
predict
(
[
img_file
],
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
...
...
@@ -300,7 +300,7 @@ def predict_video(detector, camera_id):
if
not
os
.
path
.
exists
(
FLAGS
.
output_dir
):
os
.
makedirs
(
FLAGS
.
output_dir
)
out_path
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
video_name
+
'.mp4'
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
writer
=
cv2
.
VideoWriter
(
out_path
,
fourcc
,
fps
,
(
width
,
height
))
index
=
1
while
(
1
):
...
...
deploy/python/mot_jde_infer.py
浏览文件 @
f00a4c00
...
...
@@ -120,31 +120,31 @@ class JDE_Detector(Detector):
online_scores
[
cls_id
].
append
(
tscore
)
return
online_tlwhs
,
online_scores
,
online_ids
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image_list (list): list of image
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
online_tlwhs, online_scores, online_ids (dict[np.array])
'''
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image_list
)
self
.
det_times
.
preprocess_time_s
.
end
()
pred_dets
,
pred_embs
=
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
pred_dets
=
boxes_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
...
...
@@ -152,11 +152,15 @@ class JDE_Detector(Detector):
pred_dets
=
boxes_tensor
.
copy_to_cpu
()
embs_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
1
])
pred_embs
=
embs_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
online_tlwhs
,
online_scores
,
online_ids
=
self
.
postprocess
(
pred_dets
,
pred_embs
,
threshold
)
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
return
online_tlwhs
,
online_scores
,
online_ids
...
...
@@ -172,7 +176,12 @@ def predict_image(detector, image_list):
for
frame_id
,
img_file
in
enumerate
(
image_list
):
frame
=
cv2
.
imread
(
img_file
)
if
FLAGS
.
run_benchmark
:
detector
.
predict
([
frame
],
FLAGS
.
threshold
,
warmup
=
10
,
repeats
=
10
)
# warmup
detector
.
predict
(
[
frame
],
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
detector
.
predict
(
[
frame
],
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
...
...
@@ -181,8 +190,13 @@ def predict_image(detector, image_list):
else
:
online_tlwhs
,
online_scores
,
online_ids
=
detector
.
predict
(
[
frame
],
FLAGS
.
threshold
)
online_im
=
plot_tracking_dict
(
frame
,
num_classes
,
online_tlwhs
,
online_ids
,
online_scores
,
frame_id
,
online_im
=
plot_tracking_dict
(
frame
,
num_classes
,
online_tlwhs
,
online_ids
,
online_scores
,
frame_id
,
ids2names
=
ids2names
)
if
FLAGS
.
save_images
:
if
not
os
.
path
.
exists
(
FLAGS
.
output_dir
):
...
...
@@ -211,7 +225,7 @@ def predict_video(detector, camera_id):
os
.
makedirs
(
FLAGS
.
output_dir
)
out_path
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
video_name
)
if
not
FLAGS
.
save_images
:
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
writer
=
cv2
.
VideoWriter
(
out_path
,
fourcc
,
fps
,
(
width
,
height
))
frame_id
=
0
timer
=
MOTTimer
()
...
...
deploy/python/mot_keypoint_unite_infer.py
浏览文件 @
f00a4c00
...
...
@@ -64,8 +64,12 @@ def mot_keypoint_unite_predict_image(mot_model,
frame
=
cv2
.
imread
(
img_file
)
if
FLAGS
.
run_benchmark
:
# warmup
online_tlwhs
,
online_scores
,
online_ids
=
mot_model
.
predict
(
[
frame
],
FLAGS
.
mot_threshold
,
warmup
=
10
,
repeats
=
10
)
[
frame
],
FLAGS
.
mot_threshold
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
online_tlwhs
,
online_scores
,
online_ids
=
mot_model
.
predict
(
[
frame
],
FLAGS
.
mot_threshold
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
mot_model
.
cpu_mem
+=
cm
mot_model
.
gpu_mem
+=
gm
...
...
@@ -84,13 +88,16 @@ def mot_keypoint_unite_predict_image(mot_model,
FLAGS
.
run_benchmark
)
else
:
warmup
=
10
if
FLAGS
.
run_benchmark
else
0
repeats
=
10
if
FLAGS
.
run_benchmark
else
1
if
FLAGS
.
run_benchmark
:
keypoint_results
=
keypoint_model
.
predict
(
[
frame
],
FLAGS
.
keypoint_threshold
,
warmup
=
warmup
,
repeats
=
repeats
)
repeats
=
10
,
add_timer
=
False
)
repeats
=
10
if
FLAGS
.
run_benchmark
else
1
keypoint_results
=
keypoint_model
.
predict
(
[
frame
],
FLAGS
.
keypoint_threshold
,
repeats
=
repeats
)
if
FLAGS
.
run_benchmark
:
cm
,
gm
,
gu
=
get_current_memory_mb
()
...
...
@@ -103,7 +110,7 @@ def mot_keypoint_unite_predict_image(mot_model,
keypoint_results
,
visual_thread
=
FLAGS
.
keypoint_threshold
,
returnimg
=
True
,
ids
=
online_ids
ids
=
online_ids
[
0
]
if
KEYPOINT_SUPPORT_MODELS
[
keypoint_arch
]
==
'keypoint_topdown'
else
None
)
...
...
@@ -144,7 +151,7 @@ def mot_keypoint_unite_predict_video(mot_model,
os
.
makedirs
(
FLAGS
.
output_dir
)
out_path
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
video_name
)
if
not
FLAGS
.
save_images
:
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
writer
=
cv2
.
VideoWriter
(
out_path
,
fourcc
,
fps
,
(
width
,
height
))
frame_id
=
0
timer_mot
=
FPSTimer
()
...
...
@@ -193,7 +200,7 @@ def mot_keypoint_unite_predict_video(mot_model,
keypoint_results
,
visual_thread
=
FLAGS
.
keypoint_threshold
,
returnimg
=
True
,
ids
=
online_ids
ids
=
online_ids
[
0
]
if
KEYPOINT_SUPPORT_MODELS
[
keypoint_arch
]
==
'keypoint_topdown'
else
None
)
...
...
deploy/python/mot_sde_infer.py
浏览文件 @
f00a4c00
...
...
@@ -178,40 +178,43 @@ class SDE_Detector(Detector):
return
pred_dets
,
pred_xyxys
def
predict
(
self
,
image
,
scaled
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image
,
scaled
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image (np.ndarray): image numpy data
threshold (float): threshold of predicted box' score
scaled (bool): whether the coords after detector outputs are scaled,
default False in jde yolov3, set True in general detector.
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
pred_dets (np.ndarray, [N, 6])
'''
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
boxes
=
boxes_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
boxes
=
boxes_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
if
len
(
boxes
)
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
pred_xyxys
=
np
.
zeros
((
1
,
4
),
dtype
=
np
.
float32
)
...
...
@@ -223,6 +226,7 @@ class SDE_Detector(Detector):
pred_dets
,
pred_xyxys
=
self
.
postprocess
(
boxes
,
input_shape
,
im_shape
,
scale_factor
,
threshold
,
scaled
)
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
return
pred_dets
,
pred_xyxys
...
...
@@ -271,7 +275,8 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
assert
batch_size
==
1
,
"The JDE Detector only supports batch size=1 now"
self
.
pred_config
=
pred_config
def
postprocess_bboxes
(
self
,
boxes
,
input_shape
,
im_shape
,
scale_factor
,
threshold
):
def
postprocess_bboxes
(
self
,
boxes
,
input_shape
,
im_shape
,
scale_factor
,
threshold
):
over_thres_idx
=
np
.
nonzero
(
boxes
[:,
1
:
2
]
>=
threshold
)[
0
]
if
len
(
over_thres_idx
)
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
...
...
@@ -299,33 +304,35 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
(
pred_tlwhs
,
pred_scores
,
pred_cls_ids
),
axis
=
1
)
return
pred_dets
,
pred_xyxys
def
predict
(
self
,
image
,
scaled
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image
,
scaled
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image (np.ndarray): image numpy data
threshold (float): threshold of predicted box' score
scaled (bool): whether the coords after detector outputs are scaled,
default False in jde yolov3, set True in general detector.
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
pred_dets (np.ndarray, [N, 6])
'''
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
np_score_list
,
np_boxes_list
=
[],
[]
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
boxes
=
boxes_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
np_score_list
,
np_boxes_list
=
[],
[]
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
np_score_list
.
clear
()
...
...
@@ -340,9 +347,12 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
self
.
predictor
.
get_output_handle
(
output_names
[
out_idx
+
num_outs
]).
copy_to_cpu
())
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
img_num
+=
1
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
self
.
postprocess
=
PicoDetPostProcess
(
inputs
[
'image'
].
shape
[
2
:],
inputs
[
'im_shape'
],
...
...
@@ -360,7 +370,8 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
scale_factor
=
inputs
[
'scale_factor'
]
pred_dets
,
pred_xyxys
=
self
.
postprocess_bboxes
(
boxes
,
input_shape
,
im_shape
,
scale_factor
,
threshold
)
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
return
pred_dets
,
pred_xyxys
...
...
@@ -445,33 +456,34 @@ class SDE_ReID(object):
return
online_tlwhs
,
online_scores
,
online_ids
def
predict
(
self
,
crops
,
pred_dets
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
crops
,
pred_dets
,
repeats
=
1
,
add_timer
=
True
):
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
crops
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
feature_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
pred_embs
=
feature_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
feature_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
pred_embs
=
feature_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
online_tlwhs
,
online_scores
,
online_ids
=
self
.
postprocess
(
pred_dets
,
pred_embs
)
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
...
...
@@ -483,8 +495,20 @@ def predict_image(detector, reid_model, image_list):
for
i
,
img_file
in
enumerate
(
image_list
):
frame
=
cv2
.
imread
(
img_file
)
if
FLAGS
.
run_benchmark
:
# warmup
pred_dets
,
pred_xyxys
=
detector
.
predict
(
[
frame
],
FLAGS
.
scaled
,
FLAGS
.
threshold
,
warmup
=
10
,
repeats
=
10
)
[
frame
],
FLAGS
.
scaled
,
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
True
)
# run benchmark
pred_dets
,
pred_xyxys
=
detector
.
predict
(
[
frame
],
FLAGS
.
scaled
,
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
...
...
@@ -503,8 +527,12 @@ def predict_image(detector, reid_model, image_list):
crops
=
reid_model
.
get_crops
(
pred_xyxys
,
frame
)
if
FLAGS
.
run_benchmark
:
# warmup
online_tlwhs
,
online_scores
,
online_ids
=
reid_model
.
predict
(
crops
,
pred_dets
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
online_tlwhs
,
online_scores
,
online_ids
=
reid_model
.
predict
(
crops
,
pred_dets
,
warmup
=
10
,
repeats
=
10
)
crops
,
pred_dets
,
repeats
=
10
,
add_timer
=
False
)
else
:
online_tlwhs
,
online_scores
,
online_ids
=
reid_model
.
predict
(
crops
,
pred_dets
)
...
...
@@ -538,7 +566,7 @@ def predict_video(detector, reid_model, camera_id):
os
.
makedirs
(
FLAGS
.
output_dir
)
out_path
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
video_name
)
if
not
FLAGS
.
save_images
:
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
writer
=
cv2
.
VideoWriter
(
out_path
,
fourcc
,
fps
,
(
width
,
height
))
frame_id
=
0
timer
=
MOTTimer
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录