Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
effdae16
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
effdae16
编写于
10月 08, 2018
作者:
Q
qingqing01
提交者:
GitHub
10月 08, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revert "Optimization of Kernels that related to DeepLabv3+ (#13534)"
上级
3b7e20b0
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
188 addition
and
817 deletion
+188
-817
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+0
-1
paddle/fluid/operators/conv_op.h
paddle/fluid/operators/conv_op.h
+3
-4
paddle/fluid/operators/conv_transpose_op.h
paddle/fluid/operators/conv_transpose_op.h
+3
-4
paddle/fluid/operators/cub_reduce.h
paddle/fluid/operators/cub_reduce.h
+0
-322
paddle/fluid/operators/math/depthwise_conv.cu
paddle/fluid/operators/math/depthwise_conv.cu
+156
-323
paddle/fluid/operators/math/depthwise_conv.h
paddle/fluid/operators/math/depthwise_conv.h
+1
-4
paddle/fluid/operators/reduce_mean_op.cu
paddle/fluid/operators/reduce_mean_op.cu
+9
-56
paddle/fluid/operators/reduce_sum_op.cu
paddle/fluid/operators/reduce_sum_op.cu
+9
-51
python/paddle/fluid/tests/unittests/test_conv2d_op.py
python/paddle/fluid/tests/unittests/test_conv2d_op.py
+7
-52
未找到文件。
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
effdae16
...
...
@@ -301,7 +301,6 @@ op_library(fusion_lstm_op DEPS cpu_lstm_compute)
if
(
WITH_GPU
)
op_library
(
conv_op DEPS vol2col depthwise_conv im2col
)
op_library
(
layer_norm_op DEPS cub
)
op_library
(
reduce_mean_op DEPS cub
)
else
()
op_library
(
conv_op DEPS vol2col im2col
)
endif
()
...
...
paddle/fluid/operators/conv_op.h
浏览文件 @
effdae16
...
...
@@ -380,8 +380,7 @@ class DepthwiseConvKernel : public framework::OpKernel<T> {
math
::
DepthwiseConvFunctor
<
DeviceContext
,
T
>
depthwiseConv
;
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
depthwiseConv
(
dev_ctx
,
*
input
,
filter
,
strides
,
paddings
,
dilations
,
output
);
depthwiseConv
(
dev_ctx
,
*
input
,
filter
,
strides
,
paddings
,
output
);
}
};
...
...
@@ -416,14 +415,14 @@ class DepthwiseConvGradKernel : public framework::OpKernel<T> {
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
set_zero
(
dev_ctx
,
input_grad
,
static_cast
<
T
>
(
0
));
depthwiseConvInputGrad
(
dev_ctx
,
*
input
,
filter
,
*
output_grad
,
strides
,
paddings
,
dilations
,
input_grad
);
paddings
,
input_grad
);
}
if
(
filter_grad
)
{
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
set_zero
(
dev_ctx
,
filter_grad
,
static_cast
<
T
>
(
0
));
depthwiseConvFilterGrad
(
dev_ctx
,
*
input
,
*
output_grad
,
strides
,
paddings
,
dilations
,
filter_grad
);
filter_grad
);
}
}
};
...
...
paddle/fluid/operators/conv_transpose_op.h
浏览文件 @
effdae16
...
...
@@ -345,7 +345,7 @@ class DepthwiseConvTransposeKernel : public framework::OpKernel<T> {
math
::
DepthwiseConvInputGradFunctor
<
DeviceContext
,
T
>
depthwiseConvInputGrad
;
depthwiseConvInputGrad
(
dev_ctx
,
*
output
,
filter
,
*
input
,
strides
,
paddings
,
dilations
,
output
);
output
);
}
};
...
...
@@ -367,11 +367,10 @@ class DepthwiseConvTransposeGradKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
if
(
input_grad
)
{
math
::
DepthwiseConvFunctor
<
DeviceContext
,
T
>
depthwiseConv
;
depthwiseConv
(
dev_ctx
,
*
output_grad
,
filter
,
strides
,
paddings
,
dilations
,
depthwiseConv
(
dev_ctx
,
*
output_grad
,
filter
,
strides
,
paddings
,
input_grad
);
}
...
...
@@ -383,7 +382,7 @@ class DepthwiseConvTransposeGradKernel : public framework::OpKernel<T> {
math
::
DepthwiseConvFilterGradFunctor
<
DeviceContext
,
T
>
depthwiseConvFilterGrad
;
depthwiseConvFilterGrad
(
dev_ctx
,
*
output_grad
,
*
input
,
strides
,
paddings
,
dilations
,
filter_grad
);
filter_grad
);
}
}
};
...
...
paddle/fluid/operators/cub_reduce.h
已删除
100644 → 0
浏览文件 @
3b7e20b0
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>
#include <cub/cub.cuh> // NOLINT
#include "paddle/fluid/framework/tensor.h"
namespace
paddle
{
namespace
operators
{
namespace
detail
{
template
<
typename
T
,
size_t
ElementCount
>
struct
Array
{
public:
HOSTDEVICE
inline
Array
()
{}
HOSTDEVICE
inline
T
&
operator
[](
size_t
index
)
{
return
data_
[
index
];
}
HOSTDEVICE
inline
const
T
&
operator
[](
size_t
index
)
const
{
return
data_
[
index
];
}
HOSTDEVICE
constexpr
inline
size_t
size
()
const
{
return
ElementCount
;
}
template
<
typename
VectorLikeType
>
static
inline
Array
<
T
,
ElementCount
>
From
(
const
VectorLikeType
&
vec
)
{
PADDLE_ENFORCE_EQ
(
vec
.
size
(),
ElementCount
,
"size not match"
);
size_t
n
=
static_cast
<
size_t
>
(
vec
.
size
());
Array
<
T
,
ElementCount
>
ret
;
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
ret
[
i
]
=
vec
[
i
];
return
ret
;
}
private:
T
data_
[
ElementCount
];
};
// reduce the last axis of 2d array
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
,
int
BlockDim
>
__global__
void
ReduceKernel2D
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
Ty
init
,
int
reduce_num
)
{
__shared__
typename
cub
::
BlockReduce
<
Ty
,
BlockDim
>::
TempStorage
temp_storage
;
int
idx_x
=
blockIdx
.
x
*
reduce_num
;
int
idx_y
=
threadIdx
.
x
;
Ty
reduce_var
=
init
;
for
(
int
idx_y
=
threadIdx
.
x
;
idx_y
<
reduce_num
;
idx_y
+=
BlockDim
)
reduce_var
=
reducer
(
reduce_var
,
transformer
(
x
[
idx_x
+
idx_y
]));
reduce_var
=
cub
::
BlockReduce
<
Ty
,
BlockDim
>
(
temp_storage
).
Reduce
(
reduce_var
,
reducer
);
if
(
threadIdx
.
x
==
0
)
{
y
[
blockIdx
.
x
]
=
reduce_var
;
}
}
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
,
int
BlockDim
,
int
Rank
,
int
ReduceRank
>
__global__
void
ReduceKernel
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
Ty
init
,
int
reduce_num
,
Array
<
int
,
Rank
>
x_strides
,
Array
<
int
,
ReduceRank
>
reduce_dim
,
Array
<
int
,
ReduceRank
>
reduce_strides
,
Array
<
int
,
Rank
-
ReduceRank
>
left_dim
,
Array
<
int
,
Rank
-
ReduceRank
>
left_strides
)
{
__shared__
typename
cub
::
BlockReduce
<
Ty
,
BlockDim
>::
TempStorage
temp_storage
;
Array
<
int
,
Rank
>
sub_index
;
int
left_idx
=
blockIdx
.
x
;
for
(
int
i
=
0
;
i
<
Rank
-
ReduceRank
;
++
i
)
{
sub_index
[
left_dim
[
i
]]
=
left_idx
/
left_strides
[
i
];
left_idx
%=
left_strides
[
i
];
}
int
reduce_idx
=
threadIdx
.
x
;
for
(
int
j
=
0
;
j
<
ReduceRank
;
++
j
)
{
sub_index
[
reduce_dim
[
j
]]
=
reduce_idx
/
reduce_strides
[
j
];
reduce_idx
%=
reduce_strides
[
j
];
}
int
idx_x
=
0
;
for
(
int
k
=
0
;
k
<
Rank
;
++
k
)
idx_x
+=
(
sub_index
[
k
]
*
x_strides
[
k
]);
Ty
reduce_var
=
static_cast
<
Ty
>
(
transformer
(
x
[
idx_x
]));
for
(
int
i
=
threadIdx
.
x
+
BlockDim
;
i
<
reduce_num
;
i
+=
BlockDim
)
{
int
reduce_idx
=
i
;
for
(
int
j
=
0
;
j
<
ReduceRank
;
++
j
)
{
sub_index
[
reduce_dim
[
j
]]
=
reduce_idx
/
reduce_strides
[
j
];
reduce_idx
%=
reduce_strides
[
j
];
}
int
idx_x
=
0
;
for
(
int
k
=
0
;
k
<
Rank
;
++
k
)
idx_x
+=
(
sub_index
[
k
]
*
x_strides
[
k
]);
reduce_var
=
static_cast
<
Ty
>
(
reducer
(
reduce_var
,
transformer
(
x
[
idx_x
])));
}
reduce_var
=
cub
::
BlockReduce
<
Ty
,
BlockDim
>
(
temp_storage
).
Reduce
(
reduce_var
,
reducer
);
if
(
threadIdx
.
x
==
0
)
{
y
[
blockIdx
.
x
]
=
reduce_var
;
}
}
static
inline
std
::
vector
<
int
>
GetStrides
(
const
std
::
vector
<
int
>&
dims
)
{
int
n
=
static_cast
<
int
>
(
dims
.
size
());
if
(
n
==
0
)
return
std
::
vector
<
int
>
();
std
::
vector
<
int
>
strides
(
n
);
strides
.
back
()
=
1
;
for
(
int
i
=
n
-
2
;
i
>=
0
;
--
i
)
{
strides
[
i
]
=
strides
[
i
+
1
]
*
dims
[
i
+
1
];
}
return
strides
;
}
static
inline
std
::
vector
<
int
>
GetStrides
(
const
std
::
vector
<
int
>&
dims
,
const
std
::
vector
<
int
>&
idx
)
{
int
n
=
static_cast
<
int
>
(
idx
.
size
());
if
(
n
==
0
)
return
std
::
vector
<
int
>
();
std
::
vector
<
int
>
strides
(
n
);
strides
.
back
()
=
1
;
for
(
int
i
=
n
-
2
;
i
>=
0
;
--
i
)
{
strides
[
i
]
=
strides
[
i
+
1
]
*
dims
[
idx
[
i
+
1
]];
}
return
strides
;
}
constexpr
int
kMaxBlockDim
=
512
;
static
inline
int
GetDesiredBlockDim
(
int
block_dim
)
{
return
block_dim
>=
kMaxBlockDim
?
kMaxBlockDim
:
(
1
<<
static_cast
<
int
>
(
std
::
log2
(
block_dim
)));
}
template
<
typename
Tx
,
typename
Ty
,
int
BlockDim
,
typename
ReduceOp
,
typename
TransformOp
>
static
void
TensorReduceImpl
(
const
Tx
*
x_data
,
Ty
*
y_data
,
const
platform
::
Place
&
place
,
const
ReduceOp
&
reducer
,
const
TransformOp
&
transformer
,
const
Ty
&
init
,
int
left_num
,
int
reduce_num
,
const
std
::
vector
<
int
>&
x_strides
,
const
std
::
vector
<
int
>&
reduce_dim
,
const
std
::
vector
<
int
>&
reduce_strides
,
const
std
::
vector
<
int
>&
left_dim
,
const
std
::
vector
<
int
>&
left_strides
,
cudaStream_t
stream
)
{
#define CUB_RANK_CASE(i, ...) \
case i: { \
constexpr auto kRank = i; \
switch (reduce_rank) { __VA_ARGS__; } \
} break
#define CUB_REDUCE_RANK_CASE(i, ...) \
case i: { \
constexpr auto kReduceRank = i; \
ReduceKernel<Tx, Ty, ReduceOp, TransformOp, BlockDim, kRank, \
kReduceRank><<<left_num, BlockDim, 0, stream>>>( \
x_data, y_data, reducer, transformer, init, reduce_num, \
Array<int, kRank>::From(x_strides), \
Array<int, kReduceRank>::From(reduce_dim), \
Array<int, kReduceRank>::From(reduce_strides), \
Array<int, kRank - kReduceRank>::From(left_dim), \
Array<int, kRank - kReduceRank>::From(left_strides)); \
} break
int
rank
=
x_strides
.
size
();
int
reduce_rank
=
reduce_strides
.
size
();
if
(
rank
==
reduce_rank
)
{
cub
::
TransformInputIterator
<
Ty
,
TransformOp
,
const
Tx
*>
trans_x
(
x_data
,
transformer
);
size_t
temp_storage_bytes
=
0
;
cub
::
DeviceReduce
::
Reduce
(
nullptr
,
temp_storage_bytes
,
trans_x
,
y_data
,
reduce_num
,
reducer
,
init
,
stream
);
framework
::
Tensor
tmp
;
auto
*
temp_storage
=
tmp
.
mutable_data
<
uint8_t
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
temp_storage_bytes
)}),
place
);
cub
::
DeviceReduce
::
Reduce
(
temp_storage
,
temp_storage_bytes
,
trans_x
,
y_data
,
reduce_num
,
reducer
,
init
,
stream
);
return
;
}
if
(
rank
==
2
&&
reduce_rank
==
1
&&
reduce_dim
[
0
]
==
1
)
{
ReduceKernel2D
<
Tx
,
Ty
,
ReduceOp
,
TransformOp
,
BlockDim
><<<
left_num
,
BlockDim
,
0
,
stream
>>>
(
x_data
,
y_data
,
reducer
,
transformer
,
init
,
reduce_num
);
return
;
}
/*
if (rank == 3 && reduce_rank == 1 && reduce_dim[0] == 1) {
// TODO(liangdun): we can optimize 3d case which the 2nd axis is reduced.
// Currently, it is handled by code below, but inefficient
return;
}
*/
switch
(
rank
)
{
CUB_RANK_CASE
(
2
,
CUB_REDUCE_RANK_CASE
(
1
););
CUB_RANK_CASE
(
3
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
););
CUB_RANK_CASE
(
4
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
);
CUB_REDUCE_RANK_CASE
(
3
););
CUB_RANK_CASE
(
5
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
);
CUB_REDUCE_RANK_CASE
(
3
);
CUB_REDUCE_RANK_CASE
(
4
););
CUB_RANK_CASE
(
6
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
);
CUB_REDUCE_RANK_CASE
(
3
);
CUB_REDUCE_RANK_CASE
(
4
);
CUB_REDUCE_RANK_CASE
(
5
););
CUB_RANK_CASE
(
7
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
);
CUB_REDUCE_RANK_CASE
(
3
);
CUB_REDUCE_RANK_CASE
(
4
);
CUB_REDUCE_RANK_CASE
(
5
);
CUB_REDUCE_RANK_CASE
(
6
););
CUB_RANK_CASE
(
8
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
);
CUB_REDUCE_RANK_CASE
(
3
);
CUB_REDUCE_RANK_CASE
(
4
);
CUB_REDUCE_RANK_CASE
(
5
);
CUB_REDUCE_RANK_CASE
(
6
););
CUB_RANK_CASE
(
9
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
);
CUB_REDUCE_RANK_CASE
(
3
);
CUB_REDUCE_RANK_CASE
(
4
);
CUB_REDUCE_RANK_CASE
(
5
);
CUB_REDUCE_RANK_CASE
(
6
);
CUB_REDUCE_RANK_CASE
(
7
);
CUB_REDUCE_RANK_CASE
(
8
););
}
#undef CUB_REDUCE_RANK_CASE
#undef CUB_RANK_CASE
}
}
// namespace detail
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
>
void
TensorReduce
(
const
framework
::
Tensor
&
x
,
framework
::
Tensor
*
y
,
std
::
vector
<
int
>
origin_reduce_dims
,
const
Ty
&
init
,
const
ReduceOp
&
reducer
,
const
TransformOp
&
transformer
,
cudaStream_t
stream
)
{
auto
x_dim
=
framework
::
vectorize2int
(
x
.
dims
());
std
::
vector
<
int
>
new_x_dim
,
new_reduce_dims
;
int
is_reduced
=
0
;
for
(
auto
e
:
origin_reduce_dims
)
{
auto
pos
=
e
>=
0
?
e
:
e
+
x_dim
.
size
();
is_reduced
|=
1
<<
e
;
}
for
(
int
i
=
0
;
i
<
x_dim
.
size
();
i
++
)
{
if
((
i
==
0
)
||
(((
is_reduced
>>
i
)
^
(
is_reduced
>>
(
i
-
1
)))
&
1
))
{
new_x_dim
.
push_back
(
x_dim
[
i
]);
if
((
is_reduced
>>
i
)
&
1
)
new_reduce_dims
.
push_back
(
new_x_dim
.
size
()
-
1
);
}
else
{
new_x_dim
[
new_x_dim
.
size
()
-
1
]
*=
x_dim
[
i
];
}
}
x_dim
=
new_x_dim
;
origin_reduce_dims
=
new_reduce_dims
;
int
x_rank
=
static_cast
<
int
>
(
x_dim
.
size
());
std
::
set
<
int
>
left_set
,
reduce_set
;
for
(
int
i
=
0
;
i
<
x_rank
;
++
i
)
left_set
.
insert
(
i
);
for
(
auto
e
:
origin_reduce_dims
)
{
left_set
.
erase
(
e
);
reduce_set
.
insert
(
e
);
}
std
::
vector
<
int
>
reduce_dim
(
reduce_set
.
begin
(),
reduce_set
.
end
());
std
::
vector
<
int
>
left_dim
(
left_set
.
begin
(),
left_set
.
end
());
std
::
vector
<
int
>
x_strides
=
detail
::
GetStrides
(
x_dim
);
std
::
vector
<
int
>
reduce_strides
=
detail
::
GetStrides
(
x_dim
,
reduce_dim
);
std
::
vector
<
int
>
left_strides
=
detail
::
GetStrides
(
x_dim
,
left_dim
);
int
reduce_num
=
reduce_strides
[
0
]
*
x_dim
[
reduce_dim
[
0
]];
int
left_num
=
1
;
if
(
left_dim
.
size
())
left_num
=
left_strides
[
0
]
*
x_dim
[
left_dim
[
0
]];
std
::
vector
<
int
>
y_dim
(
left_dim
.
size
());
for
(
int
i
=
0
;
i
<
left_dim
.
size
();
++
i
)
{
y_dim
[
i
]
=
x_dim
[
left_dim
[
i
]];
}
auto
x_data
=
x
.
data
<
Tx
>
();
auto
y_data
=
y
->
mutable_data
<
Ty
>
(
x
.
place
());
if
(
reduce_num
==
1
)
return
;
#define CUB_BLOCK_DIM_CASE(block_dim) \
case block_dim: { \
constexpr auto kBlockDim = block_dim; \
detail::TensorReduceImpl<Tx, Ty, block_dim, ReduceOp, TransformOp>( \
x_data, y_data, x.place(), reducer, transformer, init, left_num, \
reduce_num, x_strides, reduce_dim, reduce_strides, left_dim, \
left_strides, stream); \
} break
switch
(
detail
::
GetDesiredBlockDim
(
reduce_num
))
{
CUB_BLOCK_DIM_CASE
(
512
);
CUB_BLOCK_DIM_CASE
(
256
);
CUB_BLOCK_DIM_CASE
(
128
);
CUB_BLOCK_DIM_CASE
(
64
);
CUB_BLOCK_DIM_CASE
(
32
);
CUB_BLOCK_DIM_CASE
(
16
);
CUB_BLOCK_DIM_CASE
(
8
);
CUB_BLOCK_DIM_CASE
(
4
);
CUB_BLOCK_DIM_CASE
(
2
);
}
#undef CUB_BLOCK_DIM_CASE
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/math/depthwise_conv.cu
浏览文件 @
effdae16
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <vector>
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/platform/cuda_primitives.h"
...
...
@@ -21,54 +20,31 @@ namespace paddle {
namespace
operators
{
namespace
math
{
template
<
typename
T
>
__inline__
__device__
T
warpReduceSum
(
T
val
)
{
#if CUDA_VERSION < 9000
for
(
int
offset
=
16
;
offset
>
0
;
offset
/=
2
)
val
+=
__shfl_down
(
val
,
offset
);
return
val
;
#else
#define FULL_MASK 0xffffffff
for
(
int
offset
=
16
;
offset
>
0
;
offset
/=
2
)
val
+=
__shfl_down_sync
(
FULL_MASK
,
val
,
offset
);
return
val
;
#endif
}
__forceinline__
__device__
unsigned
lane_id
()
{
unsigned
ret
;
asm
volatile
(
"mov.u32 %0, %laneid;"
:
"=r"
(
ret
));
return
ret
;
}
__forceinline__
__device__
unsigned
warp_id
()
{
unsigned
ret
;
asm
volatile
(
"mov.u32 %0, %warpid;"
:
"=r"
(
ret
));
return
ret
;
}
// A Cuda kernel to compute the depthwise convolution forward pass
// in NCHW format.
template
<
typename
T
>
__
device__
__inline
__
void
KernelDepthwiseConv
(
const
T
*
const
input_data
,
const
T
*
const
filter_data
,
const
int
batch_size
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
__
global
__
void
KernelDepthwiseConv
(
const
int
nthreads
,
const
T
*
const
input_data
,
const
T
*
const
filter_data
,
const
int
batch_size
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
const
int
dilate_height
,
const
int
dilate_width
,
T
*
const
output_data
)
{
for
(
int
w_out
=
threadIdx
.
x
;
w_out
<
output_width
;
w_out
+=
blockDim
.
x
)
{
for
(
int
h_out
=
threadIdx
.
y
;
h_out
<
output_height
;
h_out
+=
blockDim
.
y
)
{
const
int
batch
=
blockIdx
.
y
;
const
int
c_out
=
blockIdx
.
x
;
const
int
padding_height
,
const
int
padding_width
,
T
*
const
output_data
)
{
int
index
=
(
blockIdx
.
x
*
gridDim
.
y
+
blockIdx
.
y
)
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
const
int
batch
=
index
/
output_channels
/
output_height
/
output_width
;
const
int
c_out
=
(
index
/
output_height
/
output_width
)
%
output_channels
;
const
int
h_out
=
(
index
/
output_width
)
%
output_height
;
const
int
w_out
=
index
%
output_width
;
const
int
c_in
=
c_out
/
filter_multiplier
;
const
T
*
weight
=
filter_data
+
c_out
*
filter_height
*
filter_width
;
T
value
=
0
;
const
int
h_in_start
=
-
padding_height
+
h_out
*
stride_height
;
const
int
w_in_start
=
-
padding_width
+
w_out
*
stride_width
;
const
int
h_in_end
=
h_in_start
+
filter_height
*
dilate
_height
;
const
int
w_in_end
=
w_in_start
+
filter_width
*
dilate
_width
;
const
int
h_in_end
=
h_in_start
+
filter
_height
;
const
int
w_in_end
=
w_in_start
+
filter
_width
;
const
int
in_offset
=
((
batch
*
input_channels
+
c_in
)
*
input_height
)
*
input_width
;
...
...
@@ -77,212 +53,116 @@ __device__ __inline__ void KernelDepthwiseConv(
const
int
w_end
=
w_in_end
<
input_width
?
w_in_end
:
input_width
;
const
int
h_start
=
h_in_start
>
0
?
h_in_start
:
0
;
const
int
w_start
=
w_in_start
>
0
?
w_in_start
:
0
;
int
weight_offset
=
0
;
for
(
int
h_in
=
h_in_start
;
h_in
<
h_in_end
;
h_in
+=
dilate_height
)
{
for
(
int
w_in
=
w_in_start
;
w_in
<
w_in_end
;
w_in
+=
dilate_width
)
{
if
(
h_in
>=
h_start
&&
h_in
<
h_end
&&
w_in
>=
w_start
&&
w_in
<
w_end
)
{
for
(
int
h_in
=
h_start
;
h_in
<
h_end
;
h_in
++
)
{
for
(
int
w_in
=
w_start
;
w_in
<
w_end
;
w_in
++
)
{
const
int
offset
=
in_offset
+
h_in
*
input_width
+
w_in
;
value
+=
weight
[
weight_offset
]
*
input_data
[
offset
];
value
+=
weight
[(
h_in
-
h_in_start
)
*
filter_width
+
(
w_in
-
w_in_start
)]
*
input_data
[
offset
];
}
weight_offset
++
;
}
}
int
index
=
((
batch
*
gridDim
.
x
+
c_out
)
*
output_height
+
h_out
)
*
output_width
+
w_out
;
output_data
[
index
]
=
value
;
}
}
}
template
<
typename
T
,
int
c_filter_multiplier
,
int
c_stride
>
__global__
void
KernelDepthwiseConvSp
(
const
T
*
const
input_data
,
const
T
*
const
filter_data
,
const
int
batch_size
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
const
int
dilate_height
,
const
int
dilate_width
,
T
*
const
output_data
)
{
if
(
c_filter_multiplier
==
0
)
KernelDepthwiseConv
<
T
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
output_data
);
else
KernelDepthwiseConv
<
T
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
c_filter_multiplier
,
filter_height
,
filter_height
,
c_stride
,
c_stride
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
output_data
);
}
// CUDA kernel to compute the depthwise convolution backprop w.r.t input.
template
<
typename
T
>
__device__
__inline__
void
KernelDepthwiseConvInputGrad
(
const
T
*
const
output_grad_data
,
const
T
*
const
filter_data
,
const
int
batch_size
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
const
int
dilate_height
,
const
int
dilate_width
,
T
*
const
input_grad_data
)
{
for
(
int
w_in
=
threadIdx
.
x
;
w_in
<
input_width
;
w_in
+=
blockDim
.
x
)
{
for
(
int
h_in
=
threadIdx
.
y
;
h_in
<
input_height
;
h_in
+=
blockDim
.
y
)
{
const
int
batch
=
blockIdx
.
y
;
const
int
c_in
=
blockIdx
.
x
;
__global__
void
KernelDepthwiseConvInputGrad
(
const
int
nthreads
,
const
T
*
const
output_grad_data
,
const
T
*
const
filter_data
,
const
int
batch_size
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
T
*
const
input_grad_data
)
{
int
index
=
(
blockIdx
.
x
*
gridDim
.
y
+
blockIdx
.
y
)
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
const
int
batch
=
index
/
input_channels
/
input_height
/
input_width
;
const
int
c_in
=
(
index
/
input_height
/
input_width
)
%
input_channels
;
const
int
h_in
=
(
index
/
input_width
)
%
input_height
;
const
int
w_in
=
index
%
input_width
;
const
int
c_out_start
=
c_in
*
filter_multiplier
;
int
h_out_start
=
h_in
-
(
filter_height
-
1
)
*
dilate_height
+
padding_height
;
(
h_in
-
filter_height
+
padding_height
+
stride_height
)
/
stride_height
;
h_out_start
=
0
>
h_out_start
?
0
:
h_out_start
;
int
h_out_end
=
h_in
+
padding_height
;
int
h_out_end
=
(
h_in
+
padding_height
)
/
stride_height
;
h_out_end
=
output_height
-
1
<
h_out_end
?
output_height
-
1
:
h_out_end
;
int
w_out_start
=
w_in
-
(
filter_width
-
1
)
*
dilate_width
+
padding_width
;
(
w_in
-
filter_width
+
padding_width
+
stride_width
)
/
stride_width
;
w_out_start
=
0
>
w_out_start
?
0
:
w_out_start
;
int
w_out_end
=
w_in
+
padding_width
;
int
w_out_end
=
(
w_in
+
padding_width
)
/
stride_width
;
w_out_end
=
output_width
-
1
<
w_out_end
?
output_width
-
1
:
w_out_end
;
T
value
=
0
;
for
(
int
c_out
=
c_out_start
;
c_out
<
c_out_start
+
filter_multiplier
;
c_out
++
)
{
int
filter_offset
=
(
c_out
+
1
)
*
filter_height
*
filter_width
;
for
(
int
h_out
=
h_out_start
;
h_out
<=
h_out_end
;
h_out
+=
dilate_height
)
{
for
(
int
w_out
=
w_out_start
;
w_out
<=
w_out_end
;
w_out
+=
dilate_width
)
{
filter_offset
--
;
int
s_h_out
=
h_out
/
stride_height
;
int
s_w_out
=
w_out
/
stride_width
;
if
(
h_out
%
stride_height
==
0
&&
w_out
%
stride_width
==
0
&&
s_h_out
>=
0
&&
s_h_out
<
output_height
&&
s_w_out
>=
0
&&
s_w_out
<
output_width
)
{
for
(
int
h_out
=
h_out_start
;
h_out
<=
h_out_end
;
++
h_out
)
{
const
int
filter_h
=
h_in
+
padding_height
-
h_out
*
stride_height
;
for
(
int
w_out
=
w_out_start
;
w_out
<=
w_out_end
;
++
w_out
)
{
const
int
filter_w
=
w_in
+
padding_width
-
w_out
*
stride_width
;
const
int
filter_offset
=
c_out
*
filter_height
*
filter_width
+
filter_h
*
filter_width
+
filter_w
;
const
int
output_grad_offset
=
((
batch
*
output_channels
+
c_out
)
*
output_height
+
s_h_out
)
*
((
batch
*
output_channels
+
c_out
)
*
output_height
+
h_out
)
*
output_width
+
s_w_out
;
value
+=
output_grad_data
[
output_grad_offset
]
*
filter_data
[
filter_offset
];
}
}
w_out
;
value
+=
output_grad_data
[
output_grad_offset
]
*
filter_data
[
filter_offset
];
}
}
int
index
=
((
batch
*
gridDim
.
x
+
c_in
)
*
input_height
+
h_in
)
*
input_width
+
w_in
;
input_grad_data
[
index
]
=
value
;
}
input_grad_data
[
index
]
+=
value
;
}
}
template
<
typename
T
,
int
c_filter_multiplier
,
int
c_stride
>
__global__
void
KernelDepthwiseConvInputGradSp
(
const
T
*
const
output_grad_data
,
const
T
*
const
filter_data
,
const
int
batch_size
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
const
int
dilate_height
,
const
int
dilate_width
,
T
*
const
input_grad_data
)
{
if
(
c_filter_multiplier
==
0
)
KernelDepthwiseConvInputGrad
<
T
>
(
output_grad_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
input_grad_data
);
else
KernelDepthwiseConvInputGrad
<
T
>
(
output_grad_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
c_filter_multiplier
,
filter_height
,
filter_width
,
c_stride
,
c_stride
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
input_grad_data
);
}
// Cuda kernel to compute the depthwise convolution backprop w.r.t. filter.
template
<
typename
T
>
__device__
__inline__
void
KernelDepthwiseConvFilterGrad
(
const
T
*
output_grad_data
,
const
T
*
input_data
,
const
int
num
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
const
int
dilate_height
,
const
int
dilate_width
,
T
*
filter_grad_data
)
{
T
s
=
0
;
int
gbid
=
((
blockIdx
.
z
*
gridDim
.
y
)
+
blockIdx
.
y
)
*
gridDim
.
x
+
blockIdx
.
x
;
int
lid
=
lane_id
();
for
(
int
image_w
=
threadIdx
.
x
;
image_w
<
output_width
;
image_w
+=
blockDim
.
x
)
{
for
(
int
bid
=
0
;
bid
<
num
;
bid
++
)
{
for
(
int
image_h
=
threadIdx
.
y
;
image_h
<
output_height
;
image_h
+=
blockDim
.
y
)
{
int
kernel_id
=
blockIdx
.
z
;
int
kernel_h
=
blockIdx
.
y
*
dilate_height
-
padding_height
;
int
kernel_w
=
blockIdx
.
x
*
dilate_width
-
padding_width
;
int
image_hk
=
image_h
*
stride_height
+
kernel_h
;
int
image_wk
=
image_w
*
stride_width
+
kernel_w
;
if
(
image_hk
<
0
||
image_hk
>=
input_height
)
continue
;
if
(
image_wk
<
0
||
image_wk
>=
input_width
)
continue
;
#define gaid(N, C, H, W) \
((((N)*gridDim.z + (C)) * output_height + (H)) * output_width + (W))
s
+=
output_grad_data
[
gaid
(
bid
,
kernel_id
,
image_h
,
image_w
)]
*
input_data
[((
bid
*
(
gridDim
.
z
/
filter_multiplier
)
+
kernel_id
/
filter_multiplier
)
*
input_height
+
image_hk
)
*
input_width
+
image_wk
];
#undef gaid
__global__
void
KernelDepthwiseConvFilterGrad
(
const
int
nthreads
,
const
T
*
const
output_grad_data
,
const
T
*
const
input_data
,
const
int
num
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
T
*
const
filter_grad_data
)
{
int
index
=
(
blockIdx
.
x
*
gridDim
.
y
+
blockIdx
.
y
)
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
const
int
w_out
=
index
%
output_width
;
const
int
h_out
=
(
index
/
output_width
)
%
output_height
;
const
int
c_out
=
(
index
/
output_width
/
output_height
)
%
output_channels
;
const
int
batch
=
(
index
/
output_width
/
output_height
/
output_channels
);
const
int
c_in
=
c_out
/
filter_multiplier
;
const
int
h_in_start
=
-
padding_height
+
h_out
*
stride_height
;
const
int
w_in_start
=
-
padding_width
+
w_out
*
stride_width
;
const
int
h_in_end
=
-
padding_height
+
h_out
*
stride_height
+
filter_height
;
const
int
w_in_end
=
-
padding_width
+
w_out
*
stride_width
+
filter_width
;
const
int
in_offset
=
(
batch
*
input_channels
+
c_in
)
*
input_height
*
input_width
;
T
*
addr_offset
=
filter_grad_data
+
c_out
*
filter_height
*
filter_width
;
const
int
h_end
=
h_in_end
<
input_height
?
h_in_end
:
input_height
;
const
int
w_end
=
w_in_end
<
input_width
?
w_in_end
:
input_width
;
const
int
h_start
=
h_in_start
>
0
?
h_in_start
:
0
;
const
int
w_start
=
w_in_start
>
0
?
w_in_start
:
0
;
for
(
int
h_in
=
h_start
;
h_in
<
h_end
;
h_in
++
)
{
for
(
int
w_in
=
w_start
;
w_in
<
w_end
;
w_in
++
)
{
const
int
offset
=
in_offset
+
h_in
*
input_width
+
w_in
;
const
T
diff_temp
=
output_grad_data
[
index
]
*
input_data
[
offset
];
T
*
addr
=
addr_offset
+
(
h_in
-
h_in_start
)
*
filter_width
+
(
w_in
-
w_in_start
);
paddle
::
platform
::
CudaAtomicAdd
(
addr
,
diff_temp
);
}
}
}
#if __CUDA_ARCH__ >= 530
s
=
warpReduceSum
<
T
>
(
s
);
if
(
lid
==
0
)
paddle
::
platform
::
CudaAtomicAdd
(
&
filter_grad_data
[
gbid
],
s
);
#else
paddle
::
platform
::
CudaAtomicAdd
(
&
filter_grad_data
[
gbid
],
s
);
#endif
}
template
<
typename
T
,
int
c_filter_multiplier
>
__global__
void
KernelDepthwiseConvFilterGradSp
(
const
T
*
output_grad_data
,
const
T
*
input_data
,
const
int
num
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
const
int
dilate_height
,
const
int
dilate_width
,
T
*
filter_grad_data
)
{
if
(
c_filter_multiplier
==
0
)
KernelDepthwiseConvFilterGrad
<
T
>
(
output_grad_data
,
input_data
,
num
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
filter_grad_data
);
else
KernelDepthwiseConvFilterGrad
<
T
>
(
output_grad_data
,
input_data
,
num
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
c_filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
filter_grad_data
);
}
/*
...
...
@@ -297,9 +177,7 @@ class DepthwiseConvFunctor<platform::CUDADeviceContext, T> {
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
framework
::
Tensor
*
output
)
{
const
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_height
=
input
.
dims
()[
2
];
...
...
@@ -313,37 +191,22 @@ class DepthwiseConvFunctor<platform::CUDADeviceContext, T> {
const
int
stride_width
=
strides
[
1
];
const
int
padding_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
const
int
dilate_height
=
dilations
[
0
];
const
int
dilate_width
=
dilations
[
1
];
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
filter_data
=
filter
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
thread
=
512
;
int
blocks
=
std
::
min
(
std
::
max
(
thread
/
output_width
,
1
),
output_height
);
dim3
threads
(
std
::
min
(
output_width
,
thread
),
blocks
,
1
);
dim3
grid
(
output_channels
,
batch_size
,
1
);
int
filter_multiplier
=
output_channels
/
input_channels
;
#define check_case(c_filter_multiplier, c_stride) \
if (c_filter_multiplier == 0 || \
filter_multiplier == c_filter_multiplier && \
stride_height == stride_width && stride_height == c_stride) { \
KernelDepthwiseConvSp<T, c_filter_multiplier, \
c_stride><<<grid, threads, 0, context.stream()>>>( \
input_data, filter_data, batch_size, output_channels, output_height, \
output_width, input_channels, input_height, input_width, \
filter_multiplier, ksize_height, ksize_width, stride_height, \
stride_width, padding_height, padding_width, dilate_height, \
dilate_width, output_data); \
return; \
}
check_case
(
1
,
1
);
check_case
(
1
,
2
);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
check_case
(
0
,
0
);
#undef check_case
int
nthreads
=
batch_size
*
output_channels
*
output_height
*
output_width
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelDepthwiseConv
<
T
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
nthreads
,
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
output_channels
/
input_channels
,
ksize_height
,
ksize_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
output_data
);
}
};
...
...
@@ -356,7 +219,6 @@ class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T> {
const
framework
::
Tensor
&
output_grad
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
...
@@ -371,39 +233,22 @@ class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T> {
const
int
stride_width
=
strides
[
1
];
const
int
padding_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
const
int
dilate_height
=
dilations
[
0
];
const
int
dilate_width
=
dilations
[
1
];
const
T
*
filter_data
=
filter
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
thread
=
512
;
int
blocks
=
std
::
min
(
std
::
max
(
thread
/
input_width
,
1
),
input_height
);
dim3
threads
(
std
::
min
(
input_width
,
thread
),
blocks
,
1
);
dim3
grid
(
input_channels
,
batch_size
,
1
);
int
filter_multiplier
=
output_channels
/
input_channels
;
#define check_case(c_filter_multiplier, c_stride) \
if (c_filter_multiplier == 0 || \
filter_multiplier == c_filter_multiplier && \
stride_height == stride_width && stride_height == c_stride) { \
KernelDepthwiseConvInputGradSp< \
T, c_filter_multiplier, \
c_stride><<<grid, threads, 0, context.stream()>>>( \
output_grad_data, filter_data, batch_size, output_channels, \
output_height, output_width, input_channels, input_height, \
input_width, filter_multiplier, ksize_height, ksize_width, \
stride_height, stride_width, padding_height, padding_width, \
dilate_height, dilate_width, input_grad_data); \
return; \
}
check_case
(
1
,
1
);
check_case
(
1
,
2
);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
check_case
(
0
,
0
);
#undef check_case
int
nthreads
=
batch_size
*
input_channels
*
input_height
*
input_width
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelDepthwiseConvInputGrad
<
T
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
nthreads
,
output_grad_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
output_channels
/
input_channels
,
ksize_height
,
ksize_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
input_grad_data
);
}
};
...
...
@@ -415,7 +260,6 @@ class DepthwiseConvFilterGradFunctor<platform::CUDADeviceContext, T> {
const
framework
::
Tensor
&
output_grad
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
framework
::
Tensor
*
filter_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
...
@@ -430,34 +274,23 @@ class DepthwiseConvFilterGradFunctor<platform::CUDADeviceContext, T> {
const
int
stride_width
=
strides
[
1
];
const
int
padding_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
const
int
dilate_height
=
dilations
[
0
];
const
int
dilate_width
=
dilations
[
1
];
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
block_size
=
512
;
int
crop_output_height
=
std
::
min
(
std
::
max
(
block_size
/
output_width
,
1
),
output_height
);
dim3
grid
(
ksize_width
,
ksize_height
,
output_channels
);
dim3
threads
(
std
::
min
(
output_width
,
block_size
),
crop_output_height
,
1
);
int
filter_multiplier
=
output_channels
/
input_channels
;
#define check_case(c_filter_multiplier) \
if (c_filter_multiplier == 0 || c_filter_multiplier == filter_multiplier) { \
KernelDepthwiseConvFilterGradSp< \
T, c_filter_multiplier><<<grid, threads, 0, context.stream()>>>( \
output_grad_data, input_data, batch_size, output_channels, \
output_height, output_width, input_channels, input_height, \
input_width, filter_multiplier, ksize_height, ksize_width, \
stride_height, stride_width, padding_height, padding_width, \
dilate_height, dilate_width, filter_grad_data); \
return; \
}
check_case
(
1
);
check_case
(
0
);
#undef check_case
int
nthreads
=
batch_size
*
output_channels
*
output_height
*
output_width
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelDepthwiseConvFilterGrad
<
T
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
nthreads
,
output_grad_data
,
input_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
output_channels
/
input_channels
,
ksize_height
,
ksize_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
filter_grad_data
);
}
};
...
...
paddle/fluid/operators/math/depthwise_conv.h
浏览文件 @
effdae16
...
...
@@ -32,8 +32,7 @@ class DepthwiseConvFunctor {
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
framework
::
Tensor
*
output
);
const
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
output
);
};
template
<
typename
DeviceContext
,
typename
T
>
...
...
@@ -44,7 +43,6 @@ class DepthwiseConvInputGradFunctor {
const
framework
::
Tensor
&
output_grad
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
framework
::
Tensor
*
input_grad
);
};
...
...
@@ -55,7 +53,6 @@ class DepthwiseConvFilterGradFunctor {
const
framework
::
Tensor
&
output_grad
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
framework
::
Tensor
*
filter_grad
);
};
...
...
paddle/fluid/operators/reduce_mean_op.cu
浏览文件 @
effdae16
...
...
@@ -12,64 +12,17 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <vector>
#include "paddle/fluid/operators/cub_reduce.h"
#include "paddle/fluid/operators/reduce_mean_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
struct
DivideFunctor
{
HOSTDEVICE
explicit
inline
DivideFunctor
(
int
n
)
:
n_inv
((
T
)(
1.0
/
n
))
{}
HOSTDEVICE
inline
T
operator
()(
const
T
&
x
)
const
{
return
x
*
n_inv
;
}
private:
T
n_inv
;
};
template
<
typename
T
>
class
ReduceMeanKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
bool
keep_dim
=
context
.
Attr
<
bool
>
(
"keep_dim"
);
std
::
vector
<
int
>
reduce_dims
;
if
(
reduce_all
)
{
reduce_dims
.
resize
(
input
->
dims
().
size
());
for
(
int
i
=
0
;
i
<
reduce_dims
.
size
();
++
i
)
reduce_dims
[
i
]
=
i
;
}
else
{
for
(
auto
e
:
dims
)
{
reduce_dims
.
push_back
(
e
>=
0
?
e
:
e
+
input
->
dims
().
size
());
}
}
int
reduce_num
=
1
;
for
(
int
i
=
0
;
i
<
reduce_dims
.
size
();
++
i
)
{
reduce_num
*=
input
->
dims
()[
reduce_dims
[
i
]];
}
auto
stream
=
context
.
cuda_device_context
().
stream
();
TensorReduce
<
T
,
T
,
cub
::
Sum
,
DivideFunctor
<
T
>>
(
*
input
,
output
,
reduce_dims
,
static_cast
<
T
>
(
0
),
cub
::
Sum
(),
DivideFunctor
<
T
>
(
reduce_num
),
stream
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_CUDA_KERNEL
(
reduce_mean
,
ops
::
ReduceMeanKernel
<
float
>
,
ops
::
ReduceMeanKernel
<
double
>
,
ops
::
ReduceMeanKernel
<
int
>
,
ops
::
ReduceMeanKernel
<
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
reduce_mean
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
ops
::
MeanFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
,
ops
::
MeanFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
,
ops
::
MeanFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
,
ops
::
MeanFunctor
>
);
REGISTER_OP_CUDA_KERNEL
(
reduce_mean_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
ops
::
MeanGradFunctor
>
,
...
...
paddle/fluid/operators/reduce_sum_op.cu
浏览文件 @
effdae16
...
...
@@ -12,59 +12,17 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/cub_reduce.h"
#include "paddle/fluid/operators/reduce_sum_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
struct
IdentityFunctor
{
HOSTDEVICE
explicit
inline
IdentityFunctor
()
{}
HOSTDEVICE
inline
T
operator
()(
const
T
&
x
)
const
{
return
x
;
}
};
template
<
typename
T
>
class
ReduceSumKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
bool
keep_dim
=
context
.
Attr
<
bool
>
(
"keep_dim"
);
std
::
vector
<
int
>
reduce_dims
;
if
(
reduce_all
)
{
reduce_dims
.
resize
(
input
->
dims
().
size
());
for
(
int
i
=
0
;
i
<
reduce_dims
.
size
();
++
i
)
reduce_dims
[
i
]
=
i
;
}
else
{
for
(
auto
e
:
dims
)
{
reduce_dims
.
push_back
(
e
>=
0
?
e
:
e
+
input
->
dims
().
size
());
}
}
int
reduce_num
=
1
;
for
(
int
i
=
0
;
i
<
reduce_dims
.
size
();
++
i
)
{
reduce_num
*=
input
->
dims
()[
reduce_dims
[
i
]];
}
auto
stream
=
context
.
cuda_device_context
().
stream
();
TensorReduce
<
T
,
T
,
cub
::
Sum
,
IdentityFunctor
<
T
>>
(
*
input
,
output
,
reduce_dims
,
static_cast
<
T
>
(
0
),
cub
::
Sum
(),
IdentityFunctor
<
T
>
(),
stream
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_CUDA_KERNEL
(
reduce_sum
,
ops
::
ReduceSumKernel
<
float
>
,
ops
::
ReduceSumKernel
<
double
>
,
ops
::
ReduceSumKernel
<
int
>
,
ops
::
ReduceSumKernel
<
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
reduce_sum
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
ops
::
SumFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
,
ops
::
SumFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
,
ops
::
SumFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
,
ops
::
SumFunctor
>
);
REGISTER_OP_CUDA_KERNEL
(
reduce_sum_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
ops
::
SumGradFunctor
>
,
...
...
python/paddle/fluid/tests/unittests/test_conv2d_op.py
浏览文件 @
effdae16
...
...
@@ -67,7 +67,6 @@ class TestConv2dOp(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"conv2d"
self
.
use_cudnn
=
False
self
.
use_cuda
=
False
self
.
use_mkldnn
=
False
self
.
data_format
=
"AnyLayout"
self
.
dtype
=
np
.
float32
...
...
@@ -102,25 +101,24 @@ class TestConv2dOp(OpTest):
}
self
.
outputs
=
{
'Output'
:
output
}
def
testcuda
(
self
):
return
core
.
is_compiled_with_cuda
()
and
(
self
.
use_cudnn
or
self
.
use_cuda
)
def
testcudnn
(
self
):
return
core
.
is_compiled_with_cuda
()
and
self
.
use_cudnn
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
a
()
else
core
.
CPUPlace
()
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
nn
()
else
core
.
CPUPlace
()
self
.
check_output_with_place
(
place
,
atol
=
1e-5
)
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
a
()
else
core
.
CPUPlace
()
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
nn
()
else
core
.
CPUPlace
()
self
.
check_grad_with_place
(
place
,
set
([
'Input'
,
'Filter'
]),
'Output'
,
max_relative_error
=
0.02
)
def
test_check_grad_no_filter
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
a
()
else
core
.
CPUPlace
()
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
nn
()
else
core
.
CPUPlace
()
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Output'
,
...
...
@@ -130,7 +128,7 @@ class TestConv2dOp(OpTest):
def
test_check_grad_no_input
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
a
()
else
core
.
CPUPlace
()
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
nn
()
else
core
.
CPUPlace
()
self
.
check_grad_with_place
(
place
,
[
'Filter'
],
'Output'
,
...
...
@@ -327,65 +325,22 @@ class TestFP16CUDNNWithInput1x1Filter1x1(TestWithInput1x1Filter1x1):
class
TestDepthwiseConv
(
TestConv2dOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
3
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConv2
(
TestConv2dOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
3
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConv3
(
TestConv2dOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConvWithDilation
(
TestConv2dOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConvWithDilation2
(
TestConv2dOp
):
class
TestDepthwiseConv2
(
TestConv2dOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录