Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ef56ff86
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ef56ff86
编写于
4月 17, 2020
作者:
X
xinyingxinying
提交者:
GitHub
4月 17, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
# add Deform Conv
上级
f8bc4673
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
141 addition
and
157 deletion
+141
-157
ppdet/modeling/ops.py
ppdet/modeling/ops.py
+141
-157
未找到文件。
ppdet/modeling/ops.py
浏览文件 @
ef56ff86
...
@@ -14,8 +14,6 @@
...
@@ -14,8 +14,6 @@
import
numpy
as
np
import
numpy
as
np
from
numbers
import
Integral
from
numbers
import
Integral
import
math
import
six
from
paddle
import
fluid
from
paddle
import
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.param_attr
import
ParamAttr
...
@@ -26,12 +24,140 @@ from ppdet.utils.bbox_utils import bbox_overlaps, box_to_delta
...
@@ -26,12 +24,140 @@ from ppdet.utils.bbox_utils import bbox_overlaps, box_to_delta
__all__
=
[
__all__
=
[
'AnchorGenerator'
,
'DropBlock'
,
'RPNTargetAssign'
,
'GenerateProposals'
,
'AnchorGenerator'
,
'DropBlock'
,
'RPNTargetAssign'
,
'GenerateProposals'
,
'MultiClassNMS'
,
'BBoxAssigner'
,
'MaskAssigner'
,
'RoIAlign'
,
'RoIPool'
,
'MultiClassNMS'
,
'BBoxAssigner'
,
'MaskAssigner'
,
'RoIAlign'
,
'RoIPool'
,
'MultiBoxHead'
,
'SSD
LiteMultiBoxHead'
,
'SSDOutputDecoder
'
,
'MultiBoxHead'
,
'SSD
OutputDecoder'
,
'RetinaTargetAssign
'
,
'Retina
TargetAssign'
,
'RetinaOutputDecoder'
,
'ConvNorm
'
,
'Retina
OutputDecoder'
,
'ConvNorm'
,
'DeformConvNorm'
,
'MultiClassSoftNMS
'
,
'
MultiClassSoftNMS'
,
'
LibraBBoxAssigner'
'LibraBBoxAssigner'
]
]
def
_conv_offset
(
input
,
filter_size
,
stride
,
padding
,
act
=
None
,
name
=
None
):
out_channel
=
filter_size
*
filter_size
*
3
out
=
fluid
.
layers
.
conv2d
(
input
,
num_filters
=
out_channel
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0
),
name
=
name
+
".w_0"
),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0
),
name
=
name
+
".b_0"
),
act
=
act
,
name
=
name
)
return
out
def
DeformConvNorm
(
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
norm_decay
=
0.
,
norm_type
=
'affine_channel'
,
norm_groups
=
32
,
dilation
=
1
,
lr_scale
=
1
,
freeze_norm
=
False
,
act
=
None
,
norm_name
=
None
,
initializer
=
None
,
bias_attr
=
False
,
name
=
None
):
if
bias_attr
:
bias_para
=
ParamAttr
(
name
=
name
+
"_bias"
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0
),
learning_rate
=
lr_scale
*
2
)
else
:
bias_para
=
False
offset_mask
=
_conv_offset
(
input
=
input
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
act
=
None
,
name
=
name
+
"_conv_offset"
)
offset_channel
=
filter_size
**
2
*
2
mask_channel
=
filter_size
**
2
offset
,
mask
=
fluid
.
layers
.
split
(
input
=
offset_mask
,
num_or_sections
=
[
offset_channel
,
mask_channel
],
dim
=
1
)
mask
=
fluid
.
layers
.
sigmoid
(
mask
)
conv
=
fluid
.
layers
.
deformable_conv
(
input
=
input
,
offset
=
offset
,
mask
=
mask
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
*
dilation
,
dilation
=
dilation
,
groups
=
groups
,
deformable_groups
=
1
,
im2col_step
=
1
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
,
initializer
=
initializer
,
learning_rate
=
lr_scale
),
bias_attr
=
bias_para
,
name
=
name
+
".conv2d.output.1"
)
norm_lr
=
0.
if
freeze_norm
else
1.
pattr
=
ParamAttr
(
name
=
norm_name
+
'_scale'
,
learning_rate
=
norm_lr
*
lr_scale
,
regularizer
=
L2Decay
(
norm_decay
))
battr
=
ParamAttr
(
name
=
norm_name
+
'_offset'
,
learning_rate
=
norm_lr
*
lr_scale
,
regularizer
=
L2Decay
(
norm_decay
))
if
norm_type
in
[
'bn'
,
'sync_bn'
]:
global_stats
=
True
if
freeze_norm
else
False
out
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
name
=
norm_name
+
'.output.1'
,
param_attr
=
pattr
,
bias_attr
=
battr
,
moving_mean_name
=
norm_name
+
'_mean'
,
moving_variance_name
=
norm_name
+
'_variance'
,
use_global_stats
=
global_stats
)
scale
=
fluid
.
framework
.
_get_var
(
pattr
.
name
)
bias
=
fluid
.
framework
.
_get_var
(
battr
.
name
)
elif
norm_type
==
'gn'
:
out
=
fluid
.
layers
.
group_norm
(
input
=
conv
,
act
=
act
,
name
=
norm_name
+
'.output.1'
,
groups
=
norm_groups
,
param_attr
=
pattr
,
bias_attr
=
battr
)
scale
=
fluid
.
framework
.
_get_var
(
pattr
.
name
)
bias
=
fluid
.
framework
.
_get_var
(
battr
.
name
)
elif
norm_type
==
'affine_channel'
:
scale
=
fluid
.
layers
.
create_parameter
(
shape
=
[
conv
.
shape
[
1
]],
dtype
=
conv
.
dtype
,
attr
=
pattr
,
default_initializer
=
fluid
.
initializer
.
Constant
(
1.
))
bias
=
fluid
.
layers
.
create_parameter
(
shape
=
[
conv
.
shape
[
1
]],
dtype
=
conv
.
dtype
,
attr
=
battr
,
default_initializer
=
fluid
.
initializer
.
Constant
(
0.
))
out
=
fluid
.
layers
.
affine_channel
(
x
=
conv
,
scale
=
scale
,
bias
=
bias
,
act
=
act
)
if
freeze_norm
:
scale
.
stop_gradient
=
True
bias
.
stop_gradient
=
True
return
out
def
ConvNorm
(
input
,
def
ConvNorm
(
input
,
num_filters
,
num_filters
,
filter_size
,
filter_size
,
...
@@ -178,6 +304,16 @@ def DropBlock(input, block_size, keep_prob, is_test):
...
@@ -178,6 +304,16 @@ def DropBlock(input, block_size, keep_prob, is_test):
return
output
return
output
def
CreateTensorFromNumpy
(
numpy_array
):
paddle_array
=
fluid
.
layers
.
create_parameter
(
attr
=
ParamAttr
(),
shape
=
numpy_array
.
shape
,
dtype
=
numpy_array
.
dtype
,
default_initializer
=
NumpyArrayInitializer
(
numpy_array
))
paddle_array
.
stop_gradient
=
True
return
paddle_array
@
register
@
register
@
serializable
@
serializable
class
AnchorGenerator
(
object
):
class
AnchorGenerator
(
object
):
...
@@ -560,8 +696,6 @@ class BBoxAssigner(object):
...
@@ -560,8 +696,6 @@ class BBoxAssigner(object):
@
register
@
register
class
LibraBBoxAssigner
(
object
):
class
LibraBBoxAssigner
(
object
):
__shared__
=
[
'num_classes'
]
def
__init__
(
self
,
def
__init__
(
self
,
batch_size_per_im
=
512
,
batch_size_per_im
=
512
,
fg_fraction
=
.
25
,
fg_fraction
=
.
25
,
...
@@ -807,7 +941,6 @@ class LibraBBoxAssigner(object):
...
@@ -807,7 +941,6 @@ class LibraBBoxAssigner(object):
hs
=
boxes
[:,
3
]
-
boxes
[:,
1
]
+
1
hs
=
boxes
[:,
3
]
-
boxes
[:,
1
]
+
1
keep
=
np
.
where
((
ws
>
0
)
&
(
hs
>
0
))[
0
]
keep
=
np
.
where
((
ws
>
0
)
&
(
hs
>
0
))[
0
]
boxes
=
boxes
[
keep
]
boxes
=
boxes
[
keep
]
max_overlaps
=
max_overlaps
[
keep
]
fg_inds
=
np
.
where
(
max_overlaps
>=
fg_thresh
)[
0
]
fg_inds
=
np
.
where
(
max_overlaps
>=
fg_thresh
)[
0
]
bg_inds
=
np
.
where
((
max_overlaps
<
bg_thresh_hi
)
&
(
bg_inds
=
np
.
where
((
max_overlaps
<
bg_thresh_hi
)
&
(
max_overlaps
>=
bg_thresh_lo
))[
0
]
max_overlaps
>=
bg_thresh_lo
))[
0
]
...
@@ -1078,155 +1211,6 @@ class MultiBoxHead(object):
...
@@ -1078,155 +1211,6 @@ class MultiBoxHead(object):
self
.
pad
=
pad
self
.
pad
=
pad
@
register
@
serializable
class
SSDLiteMultiBoxHead
(
object
):
def
__init__
(
self
,
min_ratio
=
20
,
max_ratio
=
90
,
base_size
=
300
,
min_sizes
=
None
,
max_sizes
=
None
,
aspect_ratios
=
[[
2.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
]],
steps
=
None
,
offset
=
0.5
,
flip
=
True
,
clip
=
False
,
pad
=
0
,
conv_decay
=
0.0
):
super
(
SSDLiteMultiBoxHead
,
self
).
__init__
()
self
.
min_ratio
=
min_ratio
self
.
max_ratio
=
max_ratio
self
.
base_size
=
base_size
self
.
min_sizes
=
min_sizes
self
.
max_sizes
=
max_sizes
self
.
aspect_ratios
=
aspect_ratios
self
.
steps
=
steps
self
.
offset
=
offset
self
.
flip
=
flip
self
.
pad
=
pad
self
.
clip
=
clip
self
.
conv_decay
=
conv_decay
def
_separable_conv
(
self
,
input
,
num_filters
,
name
):
dwconv_param_attr
=
ParamAttr
(
name
=
name
+
'dw_weights'
,
regularizer
=
L2Decay
(
self
.
conv_decay
))
num_filter1
=
input
.
shape
[
1
]
depthwise_conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filter1
,
filter_size
=
3
,
stride
=
1
,
padding
=
"SAME"
,
groups
=
int
(
num_filter1
),
act
=
None
,
use_cudnn
=
False
,
param_attr
=
dwconv_param_attr
,
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
bn_param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
,
regularizer
=
L2Decay
(
0.0
))
bn_bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
,
regularizer
=
L2Decay
(
0.0
))
bn
=
fluid
.
layers
.
batch_norm
(
input
=
depthwise_conv
,
param_attr
=
bn_param_attr
,
bias_attr
=
bn_bias_attr
,
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
bn
=
fluid
.
layers
.
relu6
(
bn
)
pwconv_param_attr
=
ParamAttr
(
name
=
name
+
'pw_weights'
,
regularizer
=
L2Decay
(
self
.
conv_decay
))
pointwise_conv
=
fluid
.
layers
.
conv2d
(
input
=
bn
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
1
,
act
=
None
,
use_cudnn
=
True
,
param_attr
=
pwconv_param_attr
,
bias_attr
=
False
)
return
pointwise_conv
def
__call__
(
self
,
inputs
,
image
,
num_classes
):
def
_permute_and_reshape
(
input
,
last_dim
):
trans
=
fluid
.
layers
.
transpose
(
input
,
perm
=
[
0
,
2
,
3
,
1
])
compile_shape
=
[
0
,
-
1
,
last_dim
]
return
fluid
.
layers
.
reshape
(
trans
,
shape
=
compile_shape
)
def
_is_list_or_tuple_
(
data
):
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
if
self
.
min_sizes
is
None
and
self
.
max_sizes
is
None
:
num_layer
=
len
(
inputs
)
self
.
min_sizes
=
[]
self
.
max_sizes
=
[]
step
=
int
(
math
.
floor
(((
self
.
max_ratio
-
self
.
min_ratio
))
/
(
num_layer
-
2
)))
for
ratio
in
six
.
moves
.
range
(
self
.
min_ratio
,
self
.
max_ratio
+
1
,
step
):
self
.
min_sizes
.
append
(
self
.
base_size
*
ratio
/
100.
)
self
.
max_sizes
.
append
(
self
.
base_size
*
(
ratio
+
step
)
/
100.
)
self
.
min_sizes
=
[
self
.
base_size
*
.
10
]
+
self
.
min_sizes
self
.
max_sizes
=
[
self
.
base_size
*
.
20
]
+
self
.
max_sizes
locs
,
confs
=
[],
[]
boxes
,
mvars
=
[],
[]
for
i
,
input
in
enumerate
(
inputs
):
min_size
=
self
.
min_sizes
[
i
]
max_size
=
self
.
max_sizes
[
i
]
if
not
_is_list_or_tuple_
(
min_size
):
min_size
=
[
min_size
]
if
not
_is_list_or_tuple_
(
max_size
):
max_size
=
[
max_size
]
step
=
[
self
.
steps
[
i
]
if
self
.
steps
else
0.0
,
self
.
steps
[
i
]
if
self
.
steps
else
0.0
]
box
,
var
=
fluid
.
layers
.
prior_box
(
input
,
image
,
min_sizes
=
min_size
,
max_sizes
=
max_size
,
steps
=
step
,
aspect_ratios
=
self
.
aspect_ratios
[
i
],
variance
=
[
0.1
,
0.1
,
0.2
,
0.2
],
clip
=
self
.
clip
,
flip
=
self
.
flip
,
offset
=
0.5
)
num_boxes
=
box
.
shape
[
2
]
box
=
fluid
.
layers
.
reshape
(
box
,
shape
=
[
-
1
,
4
])
var
=
fluid
.
layers
.
reshape
(
var
,
shape
=
[
-
1
,
4
])
num_loc_output
=
num_boxes
*
4
num_conf_output
=
num_boxes
*
num_classes
# get loc
mbox_loc
=
self
.
_separable_conv
(
input
,
num_loc_output
,
"loc_{}"
.
format
(
i
+
1
))
loc
=
_permute_and_reshape
(
mbox_loc
,
4
)
# get conf
mbox_conf
=
self
.
_separable_conv
(
input
,
num_conf_output
,
"conf_{}"
.
format
(
i
+
1
))
conf
=
_permute_and_reshape
(
mbox_conf
,
num_classes
)
locs
.
append
(
loc
)
confs
.
append
(
conf
)
boxes
.
append
(
box
)
mvars
.
append
(
var
)
ssd_mbox_loc
=
fluid
.
layers
.
concat
(
locs
,
axis
=
1
)
ssd_mbox_conf
=
fluid
.
layers
.
concat
(
confs
,
axis
=
1
)
prior_boxes
=
fluid
.
layers
.
concat
(
boxes
)
box_vars
=
fluid
.
layers
.
concat
(
mvars
)
prior_boxes
.
stop_gradient
=
True
box_vars
.
stop_gradient
=
True
return
ssd_mbox_loc
,
ssd_mbox_conf
,
prior_boxes
,
box_vars
@
register
@
register
@
serializable
@
serializable
class
SSDOutputDecoder
(
object
):
class
SSDOutputDecoder
(
object
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录