Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ebd992ec
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
ebd992ec
编写于
10月 31, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
backpropagate gradients the CRF operator receives.
上级
2ac9a3d8
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
17 addition
and
8 deletion
+17
-8
paddle/operators/linear_chain_crf_op.h
paddle/operators/linear_chain_crf_op.h
+17
-8
未找到文件。
paddle/operators/linear_chain_crf_op.h
浏览文件 @
ebd992ec
...
@@ -35,6 +35,14 @@ static inline T NormalizeL1(T* x, size_t len) {
...
@@ -35,6 +35,14 @@ static inline T NormalizeL1(T* x, size_t len) {
return
sum
;
return
sum
;
}
}
template
<
typename
T
>
struct
ScalarMul
{
explicit
ScalarMul
(
const
T
&
scalar
)
:
scalar
(
scalar
)
{}
T
operator
()(
const
T
&
val
)
const
{
return
val
*
scalar
;
}
T
scalar
;
};
using
framework
::
LoDTensor
;
using
framework
::
LoDTensor
;
using
framework
::
LoD
;
using
framework
::
LoD
;
using
framework
::
Tensor
;
using
framework
::
Tensor
;
...
@@ -349,8 +357,6 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
...
@@ -349,8 +357,6 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
// data reader operator, it can have no gradients.
// data reader operator, it can have no gradients.
PADDLE_ENFORCE
(
emission_grad
,
"Output(Emission@Grad) should not be null."
);
PADDLE_ENFORCE
(
emission_grad
,
"Output(Emission@Grad) should not be null."
);
emission_grad
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
emission_grad
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
math
::
SetConstant
<
platform
::
CPUPlace
,
T
>
()(
ctx
.
device_context
(),
emission_grad
,
0.
);
if
(
transition_grad
)
{
if
(
transition_grad
)
{
transition_grad
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
transition_grad
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
math
::
SetConstant
<
platform
::
CPUPlace
,
T
>
()(
ctx
.
device_context
(),
math
::
SetConstant
<
platform
::
CPUPlace
,
T
>
()(
ctx
.
device_context
(),
...
@@ -480,15 +486,18 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
...
@@ -480,15 +486,18 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
auto
row_sum
=
prob
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
auto
row_sum
=
prob
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
x_grad_mat
.
device
(
*
place
)
=
prob
/
row_sum
;
x_grad_mat
.
device
(
*
place
)
=
(
prob
/
row_sum
).
unaryExpr
(
ScalarMul
<
T
>
(
ll_grad
));
for
(
size_t
k
=
0
;
k
<
seq_length
;
++
k
)
{
for
(
size_t
k
=
0
;
k
<
seq_length
;
++
k
)
{
x_grad_mat
(
k
,
label_value
[
k
])
-=
static_cast
<
T
>
(
1.
);
x_grad_mat
(
k
,
label_value
[
k
])
-=
static_cast
<
T
>
(
ll_grad
);
}
}
if
(
transition_grad
)
{
if
(
transition_grad
)
{
T
*
trans_grad
=
transition_grad
->
data
<
T
>
();
T
*
trans_grad
=
transition_grad
->
data
<
T
>
();
for
(
size_t
k
=
0
;
k
<
tag_num
;
++
k
)
{
for
(
size_t
k
=
0
;
k
<
tag_num
;
++
k
)
{
// Do not multiply by the output gradient here, because x_grad_mat has
// alrealy done this.
trans_grad
[
k
]
+=
x_grad_mat
(
/*from start state*/
0
,
k
);
trans_grad
[
k
]
+=
x_grad_mat
(
/*from start state*/
0
,
k
);
trans_grad
[
tag_num
+
k
]
+=
trans_grad
[
tag_num
+
k
]
+=
x_grad_mat
(
/*to end state*/
seq_length
-
1
,
k
);
x_grad_mat
(
/*to end state*/
seq_length
-
1
,
k
);
...
@@ -496,8 +505,8 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
...
@@ -496,8 +505,8 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
auto
x_exps_mat
=
EigenMatrix
<
T
>::
From
(
emission_exps
);
auto
x_exps_mat
=
EigenMatrix
<
T
>::
From
(
emission_exps
);
// TODO(caoying): Fix this to avoid using this local variable if w
hen
can
// TODO(caoying): Fix this to avoid using this local variable if w
e
can
// profil
ing
the training process.
// profil
e
the training process.
Tensor
tmp
;
Tensor
tmp
;
tmp
.
mutable_data
<
T
>
(
beta
->
dims
(),
platform
::
CPUPlace
());
tmp
.
mutable_data
<
T
>
(
beta
->
dims
(),
platform
::
CPUPlace
());
auto
tmp_mat
=
EigenMatrix
<
T
>::
From
(
tmp
);
auto
tmp_mat
=
EigenMatrix
<
T
>::
From
(
tmp
);
...
@@ -520,11 +529,11 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
...
@@ -520,11 +529,11 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
trans_grad
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
+=
trans_grad
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
+=
sum
*
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
sum
*
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
alpha_mat
(
k
-
1
,
i
)
*
tmp_mat
(
k
,
j
);
alpha_mat
(
k
-
1
,
i
)
*
tmp_mat
(
k
,
j
)
*
ll_grad
;
}
}
}
}
trans_grad
[(
label_value
[
k
-
1
]
+
state_trans_base_idx
)
*
tag_num
+
trans_grad
[(
label_value
[
k
-
1
]
+
state_trans_base_idx
)
*
tag_num
+
label_value
[
k
]]
-=
static_cast
<
T
>
(
1.
);
label_value
[
k
]]
-=
static_cast
<
T
>
(
ll_grad
);
}
}
}
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录