Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
eaaf382a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
eaaf382a
编写于
1月 08, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add python interface for huber loss
test=release/1.2
上级
847cbdce
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
63 addition
and
21 deletion
+63
-21
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/huber_loss_op.cc
paddle/fluid/operators/huber_loss_op.cc
+4
-3
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+58
-18
未找到文件。
paddle/fluid/API.spec
浏览文件 @
eaaf382a
...
@@ -197,6 +197,7 @@ paddle.fluid.layers.bilinear_tensor_product ArgSpec(args=['x', 'y', 'size', 'act
...
@@ -197,6 +197,7 @@ paddle.fluid.layers.bilinear_tensor_product ArgSpec(args=['x', 'y', 'size', 'act
paddle.fluid.layers.merge_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.merge_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.get_tensor_from_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.get_tensor_from_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1))
paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1))
paddle.fluid.layers.huber_loss ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/operators/huber_loss_op.cc
浏览文件 @
eaaf382a
...
@@ -124,8 +124,9 @@ REGISTER_OPERATOR(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
...
@@ -124,8 +124,9 @@ REGISTER_OPERATOR(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
huber_loss_grad
,
ops
::
HuberLossGradOp
);
REGISTER_OPERATOR
(
huber_loss_grad
,
ops
::
HuberLossGradOp
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
huber_loss
,
huber_loss
,
ops
::
HuberLossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
HuberLossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
HuberLossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
huber_loss_grad
,
huber_loss_grad
,
ops
::
HuberLossGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
HuberLossGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
HuberLossGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
python/paddle/fluid/layers/nn.py
浏览文件 @
eaaf382a
...
@@ -172,6 +172,7 @@ __all__ = [
...
@@ -172,6 +172,7 @@ __all__ = [
'merge_selected_rows'
,
'merge_selected_rows'
,
'get_tensor_from_selected_rows'
,
'get_tensor_from_selected_rows'
,
'lstm'
,
'lstm'
,
'huber_loss'
,
]
]
...
@@ -9049,3 +9050,42 @@ def get_tensor_from_selected_rows(x, name=None):
...
@@ -9049,3 +9050,42 @@ def get_tensor_from_selected_rows(x, name=None):
outputs
=
{
'Out'
:
out
},
outputs
=
{
'Out'
:
out
},
attrs
=
{})
attrs
=
{})
return
out
return
out
def
huber_loss
(
input
,
label
,
delta
):
"""
Huber loss is a loss function used in robust.
Huber loss can evaluate the fitness of input to label.
Different from MSE loss, Huber loss is more robust for outliers.
When the difference between input and label is large than delta
.. math::
huber\_loss = delta * (label - input) - 0.5 * delta * delta
When the difference between input and label is less than delta
.. math::
huber\_loss = 0.5 * (label - input) * (label - input)
Args:
input (Variable): This input is a probability computed by the previous operator.
The first dimension is batch size, and the last dimension is 1.
label (Variable): The groud truth whose first dimension is batch size
and last dimension is 1.
delta (float): The parameter of huber loss, which controls
the range of outliers
Returns:
huber\_loss (Variable): The huber loss with shape [batch_size, 1].
Examples:
.. code-block:: python
predictions = fluid.layers.softmax(x)
loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
"""
helper
=
LayerHelper
(
'huber_loss'
,
**
locals
())
residual
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'huber_loss'
,
inputs
=
{
'X'
:
input
,
'Y'
:
label
},
outputs
=
{
'Out'
:
out
,
'Residual'
:
residual
},
attrs
=
{
'delta'
:
delta
})
return
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录