未验证 提交 e9f8dfb5 编写于 作者: F Feng Ni 提交者: GitHub

[cherry-pick] fix yolox cpp infer (#5805)

* fix yolox cpp infer

* fix cpp infer order, test=document_fix
上级 1ee341b9
......@@ -27,8 +27,8 @@ TrainReader:
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: 640, keep_ratio: True}
- Pad: {size: 640, fill_value: [114., 114., 114.]}
- Resize: {target_size: [640, 640], keep_ratio: True, interp: 1}
- Pad: {size: [640, 640], fill_value: [114., 114., 114.]}
- Permute: {}
batch_size: 4
......@@ -38,7 +38,7 @@ TestReader:
image_shape: [3, 640, 640]
sample_transforms:
- Decode: {}
- Resize: {target_size: 640, keep_ratio: True}
- Pad: {size: 640, fill_value: [114., 114., 114.]}
- Resize: {target_size: [640, 640], keep_ratio: True, interp: 1}
- Pad: {size: [640, 640], fill_value: [114., 114., 114.]}
- Permute: {}
batch_size: 1
......@@ -64,8 +64,8 @@ TrainReader:
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: 416, keep_ratio: True}
- Pad: {size: 416, fill_value: [114., 114., 114.]}
- Resize: {target_size: [416, 416], keep_ratio: True, interp: 1}
- Pad: {size: [416, 416], fill_value: [114., 114., 114.]}
- Permute: {}
batch_size: 8
......@@ -75,7 +75,7 @@ TestReader:
image_shape: [3, 416, 416]
sample_transforms:
- Decode: {}
- Resize: {target_size: 416, keep_ratio: True}
- Pad: {size: 416, fill_value: [114., 114., 114.]}
- Resize: {target_size: [416, 416], keep_ratio: True, interp: 1}
- Pad: {size: [416, 416], fill_value: [114., 114., 114.]}
- Permute: {}
batch_size: 1
......@@ -52,8 +52,8 @@ TrainReader:
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: 416, keep_ratio: True}
- Pad: {size: 416, fill_value: [114., 114., 114.]}
- Resize: {target_size: [416, 416], keep_ratio: True, interp: 1}
- Pad: {size: [416, 416], fill_value: [114., 114., 114.]}
- Permute: {}
batch_size: 8
......@@ -63,7 +63,7 @@ TestReader:
image_shape: [3, 416, 416]
sample_transforms:
- Decode: {}
- Resize: {target_size: 416, keep_ratio: True}
- Pad: {size: 416, fill_value: [114., 114., 114.]}
- Resize: {target_size: [416, 416], keep_ratio: True, interp: 1}
- Pad: {size: [416, 416], fill_value: [114., 114., 114.]}
- Permute: {}
batch_size: 1
......@@ -161,6 +161,20 @@ class WarpAffine : public PreprocessOp {
int pad_ = 31;
};
class Pad : public PreprocessOp {
public:
virtual void Init(const YAML::Node& item) {
size_ = item["size"].as<std::vector<int>>();
fill_value_ = item["fill_value"].as<std::vector<float>>();
}
virtual void Run(cv::Mat* im, ImageBlob* data);
private:
std::vector<int> size_;
std::vector<float> fill_value_;
};
void CropImg(cv::Mat& img,
cv::Mat& crop_img,
std::vector<int>& area,
......@@ -203,6 +217,8 @@ class Preprocessor {
return std::make_shared<TopDownEvalAffine>();
} else if (name == "WarpAffine") {
return std::make_shared<WarpAffine>();
}else if (name == "Pad") {
return std::make_shared<Pad>();
}
std::cerr << "can not find function of OP: " << name
<< " and return: nullptr" << std::endl;
......
......@@ -229,6 +229,23 @@ void WarpAffine::Run(cv::Mat* im, ImageBlob* data) {
};
}
void Pad::Run(cv::Mat* im, ImageBlob* data) {
int h = size_[0];
int w = size_[1];
int rh = im->rows;
int rw = im->cols;
if (h == rh && w == rw){
data->in_net_im_ = im->clone();
return;
}
cv::copyMakeBorder(
*im, *im, 0, h - rh, 0, w - rw, cv::BORDER_CONSTANT, cv::Scalar(114));
data->in_net_im_ = im->clone();
data->in_net_shape_ = {
static_cast<float>(im->rows), static_cast<float>(im->cols),
};
}
// Preprocessor op running order
const std::vector<std::string> Preprocessor::RUN_ORDER = {"InitInfo",
"TopDownEvalAffine",
......@@ -237,6 +254,7 @@ const std::vector<std::string> Preprocessor::RUN_ORDER = {"InitInfo",
"WarpAffine",
"NormalizeImage",
"PadStride",
"Pad",
"Permute"};
void Preprocessor::Run(cv::Mat* im, ImageBlob* data) {
......
......@@ -247,77 +247,30 @@ class LetterBoxResize(object):
class Pad(object):
def __init__(self,
size=None,
size_divisor=32,
pad_mode=0,
offsets=None,
fill_value=(127.5, 127.5, 127.5)):
def __init__(self, size, fill_value=[114.0, 114.0, 114.0]):
"""
Pad image to a specified size or multiple of size_divisor.
Pad image to a specified size.
Args:
size (int, Sequence): image target size, if None, pad to multiple of size_divisor, default None
size_divisor (int): size divisor, default 32
pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top
offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1
fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5)
size (list[int]): image target size
fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0)
"""
super(Pad, self).__init__()
if isinstance(size, int):
size = [size, size]
assert pad_mode in [
-1, 0, 1, 2
], 'currently only supports four modes [-1, 0, 1, 2]'
if pad_mode == -1:
assert offsets, 'if pad_mode is -1, offsets should not be None'
self.size = size
self.size_divisor = size_divisor
self.pad_mode = pad_mode
self.fill_value = fill_value
self.offsets = offsets
def apply_image(self, image, offsets, im_size, size):
x, y = offsets
im_h, im_w = im_size
h, w = size
canvas = np.ones((h, w, 3), dtype=np.float32)
canvas *= np.array(self.fill_value, dtype=np.float32)
canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
return canvas
def __call__(self, im, im_info):
im_h, im_w = im.shape[:2]
if self.size:
h, w = self.size
assert (
im_h <= h and im_w <= w
), '(h, w) of target size should be greater than (im_h, im_w)'
else:
h = int(np.ceil(im_h / self.size_divisor) * self.size_divisor)
w = int(np.ceil(im_w / self.size_divisor) * self.size_divisor)
if h == im_h and w == im_w:
im = im.astype(np.float32)
return im, im_info
if self.pad_mode == -1:
offset_x, offset_y = self.offsets
elif self.pad_mode == 0:
offset_y, offset_x = 0, 0
elif self.pad_mode == 1:
offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2
else:
offset_y, offset_x = h - im_h, w - im_w
offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w]
im = self.apply_image(im, offsets, im_size, size)
if self.pad_mode == 0:
return im, im_info
canvas = np.ones((h, w, 3), dtype=np.float32)
canvas *= np.array(self.fill_value, dtype=np.float32)
canvas[0:im_h, 0:im_w, :] = im.astype(np.float32)
im = canvas
return im, im_info
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册