From e858471a167fb3c0e085b2357903dff0985d72c7 Mon Sep 17 00:00:00 2001 From: Siddharth Goyal Date: Tue, 22 May 2018 13:51:23 -0700 Subject: [PATCH] Add conv model for sentiment analysis with new API (#10847) --- .../test_understand_sentiment_conv.py | 149 ++++++++++++++++++ 1 file changed, 149 insertions(+) create mode 100644 python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_conv.py diff --git a/python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_conv.py b/python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_conv.py new file mode 100644 index 000000000..89179fc58 --- /dev/null +++ b/python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_conv.py @@ -0,0 +1,149 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import paddle +import paddle.fluid as fluid +from functools import partial +import numpy as np + +CLASS_DIM = 2 +EMB_DIM = 128 +HID_DIM = 512 +BATCH_SIZE = 128 + + +def convolution_net(data, input_dim, class_dim, emb_dim, hid_dim): + emb = fluid.layers.embedding( + input=data, size=[input_dim, emb_dim], is_sparse=True) + conv_3 = fluid.nets.sequence_conv_pool( + input=emb, + num_filters=hid_dim, + filter_size=3, + act="tanh", + pool_type="sqrt") + conv_4 = fluid.nets.sequence_conv_pool( + input=emb, + num_filters=hid_dim, + filter_size=4, + act="tanh", + pool_type="sqrt") + prediction = fluid.layers.fc(input=[conv_3, conv_4], + size=class_dim, + act="softmax") + return prediction + + +def inference_program(word_dict): + data = fluid.layers.data( + name="words", shape=[1], dtype="int64", lod_level=1) + + dict_dim = len(word_dict) + net = convolution_net(data, dict_dim, CLASS_DIM, EMB_DIM, HID_DIM) + return net + + +def train_program(word_dict): + prediction = inference_program(word_dict) + label = fluid.layers.data(name="label", shape=[1], dtype="int64") + cost = fluid.layers.cross_entropy(input=prediction, label=label) + avg_cost = fluid.layers.mean(cost) + accuracy = fluid.layers.accuracy(input=prediction, label=label) + return [avg_cost, accuracy] + + +def train(use_cuda, train_program, save_dirname): + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + optimizer = fluid.optimizer.Adagrad(learning_rate=0.002) + + word_dict = paddle.dataset.imdb.word_dict() + trainer = fluid.Trainer( + train_func=partial(train_program, word_dict), + place=place, + optimizer=optimizer) + + def event_handler(event): + if isinstance(event, fluid.EndEpochEvent): + test_reader = paddle.batch( + paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE) + avg_cost, acc = trainer.test( + reader=test_reader, feed_order=['words', 'label']) + + print("avg_cost: %s" % avg_cost) + print("acc : %s" % acc) + + if acc > 0.2: # Smaller value to increase CI speed + trainer.save_params(save_dirname) + trainer.stop() + + else: + print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format( + event.epoch + 1, avg_cost, acc)) + if math.isnan(avg_cost): + sys.exit("got NaN loss, training failed.") + elif isinstance(event, fluid.EndStepEvent): + print("Step {0}, Epoch {1} Metrics {2}".format( + event.step, event.epoch, map(np.array, event.metrics))) + if event.step == 1: # Run 2 iterations to speed CI + trainer.save_params(save_dirname) + trainer.stop() + + train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.imdb.train(word_dict), buf_size=25000), + batch_size=BATCH_SIZE) + + trainer.train( + num_epochs=1, + event_handler=event_handler, + reader=train_reader, + feed_order=['words', 'label']) + + +def infer(use_cuda, inference_program, save_dirname=None): + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + word_dict = paddle.dataset.imdb.word_dict() + + inferencer = fluid.Inferencer( + infer_func=partial(inference_program, word_dict), + param_path=save_dirname, + place=place) + + def create_random_lodtensor(lod, place, low, high): + data = np.random.random_integers(low, high, + [lod[-1], 1]).astype("int64") + res = fluid.LoDTensor() + res.set(data, place) + res.set_lod([lod]) + return res + + lod = [0, 4, 10] + tensor_words = create_random_lodtensor( + lod, place, low=0, high=len(word_dict) - 1) + results = inferencer.infer({'words': tensor_words}) + print("infer results: ", results) + + +def main(use_cuda): + if use_cuda and not fluid.core.is_compiled_with_cuda(): + return + save_path = "understand_sentiment_conv.inference.model" + train(use_cuda, train_program, save_path) + infer(use_cuda, inference_program, save_path) + + +if __name__ == '__main__': + for use_cuda in (False, True): + main(use_cuda=use_cuda) -- GitLab