Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
e7e4f084
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e7e4f084
编写于
12月 20, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
ignore pred overlap gt > 0.7. test=develop
上级
bd6deb1a
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
668 addition
and
125 deletion
+668
-125
paddle/fluid/operators/yolov3_loss_op.cc
paddle/fluid/operators/yolov3_loss_op.cc
+25
-10
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+474
-82
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+10
-4
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+2
-2
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+157
-27
未找到文件。
paddle/fluid/operators/yolov3_loss_op.cc
浏览文件 @
e7e4f084
...
@@ -35,12 +35,15 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
...
@@ -35,12 +35,15 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
auto
dim_gtlabel
=
ctx
->
GetInputDim
(
"GTLabel"
);
auto
dim_gtlabel
=
ctx
->
GetInputDim
(
"GTLabel"
);
auto
anchors
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
anchors
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchors"
);
int
anchor_num
=
anchors
.
size
()
/
2
;
int
anchor_num
=
anchors
.
size
()
/
2
;
auto
anchor_mask
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchor_mask"
);
int
mask_num
=
anchor_mask
.
size
();
auto
class_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"class_num"
);
auto
class_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"class_num"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"Input(X) should be a 4-D tensor."
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"Input(X) should be a 4-D tensor."
);
PADDLE_ENFORCE_EQ
(
dim_x
[
2
],
dim_x
[
3
],
PADDLE_ENFORCE_EQ
(
dim_x
[
2
],
dim_x
[
3
],
"Input(X) dim[3] and dim[4] should be euqal."
);
"Input(X) dim[3] and dim[4] should be euqal."
);
PADDLE_ENFORCE_EQ
(
dim_x
[
1
],
anchor_num
*
(
5
+
class_num
),
PADDLE_ENFORCE_EQ
(
"Input(X) dim[1] should be equal to (anchor_number * (5 "
dim_x
[
1
],
mask_num
*
(
5
+
class_num
),
"Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
"+ class_num))."
);
"+ class_num))."
);
PADDLE_ENFORCE_EQ
(
dim_gtbox
.
size
(),
3
,
PADDLE_ENFORCE_EQ
(
dim_gtbox
.
size
(),
3
,
"Input(GTBox) should be a 3-D tensor"
);
"Input(GTBox) should be a 3-D tensor"
);
...
@@ -55,6 +58,11 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
...
@@ -55,6 +58,11 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
"Attr(anchors) length should be greater then 0."
);
"Attr(anchors) length should be greater then 0."
);
PADDLE_ENFORCE_EQ
(
anchors
.
size
()
%
2
,
0
,
PADDLE_ENFORCE_EQ
(
anchors
.
size
()
%
2
,
0
,
"Attr(anchors) length should be even integer."
);
"Attr(anchors) length should be even integer."
);
for
(
size_t
i
=
0
;
i
<
anchor_mask
.
size
();
i
++
)
{
PADDLE_ENFORCE_LT
(
anchor_mask
[
i
],
anchor_num
,
"Attr(anchor_mask) should not crossover Attr(anchors)."
);
}
PADDLE_ENFORCE_GT
(
class_num
,
0
,
PADDLE_ENFORCE_GT
(
class_num
,
0
,
"Attr(class_num) should be an integer greater then 0."
);
"Attr(class_num) should be an integer greater then 0."
);
...
@@ -74,7 +82,7 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -74,7 +82,7 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
public:
public:
void
Make
()
override
{
void
Make
()
override
{
AddInput
(
"X"
,
AddInput
(
"X"
,
"The input tensor of YOLO
v3 loss operator, "
"The input tensor of YOLOv3 loss operator, "
"This is a 4-D tensor with shape of [N, C, H, W]."
"This is a 4-D tensor with shape of [N, C, H, W]."
"H and W should be same, and the second dimention(C) stores"
"H and W should be same, and the second dimention(C) stores"
"box locations, confidence score and classification one-hot"
"box locations, confidence score and classification one-hot"
...
@@ -99,13 +107,20 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -99,13 +107,20 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
int
>
(
"class_num"
,
"The number of classes to predict."
);
AddAttr
<
int
>
(
"class_num"
,
"The number of classes to predict."
);
AddAttr
<
std
::
vector
<
int
>>
(
"anchors"
,
AddAttr
<
std
::
vector
<
int
>>
(
"anchors"
,
"The anchor width and height, "
"The anchor width and height, "
"it will be parsed pair by pair."
);
"it will be parsed pair by pair."
)
AddAttr
<
int
>
(
"input_size"
,
.
SetDefault
(
std
::
vector
<
int
>
{});
"The input size of YOLOv3 net, "
AddAttr
<
std
::
vector
<
int
>>
(
"anchor_mask"
,
"generally this is set as 320, 416 or 608."
)
"The mask index of anchors used in "
.
SetDefault
(
406
);
"current YOLOv3 loss calculation."
)
.
SetDefault
(
std
::
vector
<
int
>
{});
AddAttr
<
int
>
(
"downsample"
,
"The downsample ratio from network input to YOLOv3 loss "
"input, so 32, 16, 8 should be set for the first, second, "
"and thrid YOLOv3 loss operators."
)
.
SetDefault
(
32
);
AddAttr
<
float
>
(
"ignore_thresh"
,
AddAttr
<
float
>
(
"ignore_thresh"
,
"The ignore threshold to ignore confidence loss."
);
"The ignore threshold to ignore confidence loss."
)
.
SetDefault
(
0.7
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
This operator generate yolov3 loss by given predict result and ground
This operator generate yolov3 loss by given predict result and ground
truth boxes.
truth boxes.
...
...
paddle/fluid/operators/yolov3_loss_op.h
浏览文件 @
e7e4f084
...
@@ -321,6 +321,182 @@ static void CalcYolov3LossGrad(T* input_grad_data, const Tensor& loss_grad,
...
@@ -321,6 +321,182 @@ static void CalcYolov3LossGrad(T* input_grad_data, const Tensor& loss_grad,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
class_num
);
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
class_num
);
}
}
static
int
mask_index
(
std
::
vector
<
int
>
mask
,
int
val
)
{
for
(
int
i
=
0
;
i
<
mask
.
size
();
i
++
)
{
if
(
mask
[
i
]
==
val
)
{
return
i
;
}
}
return
-
1
;
}
template
<
typename
T
>
struct
Box
{
float
x
,
y
,
w
,
h
;
};
template
<
typename
T
>
static
inline
T
sigmoid
(
T
x
)
{
return
1.0
/
(
1.0
+
std
::
exp
(
-
x
));
}
template
<
typename
T
>
static
inline
void
sigmoid_arrray
(
T
*
arr
,
int
len
)
{
for
(
int
i
=
0
;
i
<
len
;
i
++
)
{
arr
[
i
]
=
sigmoid
(
arr
[
i
]);
}
}
template
<
typename
T
>
static
inline
Box
<
T
>
get_yolo_box
(
const
T
*
x
,
std
::
vector
<
int
>
anchors
,
int
i
,
int
j
,
int
an_idx
,
int
grid_size
,
int
input_size
,
int
index
,
int
stride
)
{
Box
<
T
>
b
;
b
.
x
=
(
i
+
sigmoid
<
T
>
(
x
[
index
]))
/
grid_size
;
b
.
y
=
(
j
+
sigmoid
<
T
>
(
x
[
index
+
stride
]))
/
grid_size
;
b
.
w
=
std
::
exp
(
x
[
index
+
2
*
stride
])
*
anchors
[
2
*
an_idx
]
/
input_size
;
b
.
h
=
std
::
exp
(
x
[
index
+
3
*
stride
])
*
anchors
[
2
*
an_idx
+
1
]
/
input_size
;
return
b
;
}
template
<
typename
T
>
static
inline
Box
<
T
>
get_gt_box
(
const
T
*
gt
,
int
batch
,
int
max_boxes
,
int
idx
)
{
Box
<
T
>
b
;
b
.
x
=
gt
[(
batch
*
max_boxes
+
idx
)
*
4
];
b
.
y
=
gt
[(
batch
*
max_boxes
+
idx
)
*
4
+
1
];
b
.
w
=
gt
[(
batch
*
max_boxes
+
idx
)
*
4
+
2
];
b
.
h
=
gt
[(
batch
*
max_boxes
+
idx
)
*
4
+
3
];
return
b
;
}
template
<
typename
T
>
static
inline
T
overlap
(
T
c1
,
T
w1
,
T
c2
,
T
w2
)
{
T
l1
=
c1
-
w1
/
2.0
;
T
l2
=
c2
-
w2
/
2.0
;
T
left
=
l1
>
l2
?
l1
:
l2
;
T
r1
=
c1
+
w1
/
2.0
;
T
r2
=
c2
+
w2
/
2.0
;
T
right
=
r1
<
r2
?
r1
:
r2
;
return
right
-
left
;
}
template
<
typename
T
>
static
inline
T
box_iou
(
Box
<
T
>
b1
,
Box
<
T
>
b2
)
{
T
w
=
overlap
(
b1
.
x
,
b1
.
w
,
b2
.
x
,
b2
.
w
);
T
h
=
overlap
(
b1
.
y
,
b1
.
h
,
b2
.
y
,
b2
.
h
);
T
inter_area
=
(
w
<
0
||
h
<
0
)
?
0.0
:
w
*
h
;
T
union_area
=
b1
.
w
*
b1
.
h
+
b2
.
w
*
b2
.
h
-
inter_area
;
return
inter_area
/
union_area
;
}
static
inline
int
entry_index
(
int
batch
,
int
an_idx
,
int
hw_idx
,
int
an_num
,
int
an_stride
,
int
stride
,
int
entry
)
{
return
(
batch
*
an_num
+
an_idx
)
*
an_stride
+
entry
*
stride
+
hw_idx
;
}
template
<
typename
T
>
static
void
CalcBoxLocationLoss
(
T
*
loss
,
const
T
*
input
,
Box
<
T
>
gt
,
std
::
vector
<
int
>
anchors
,
int
an_idx
,
int
box_idx
,
int
gi
,
int
gj
,
int
grid_size
,
int
input_size
,
int
stride
)
{
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
scale
=
2.0
-
gt
.
w
*
gt
.
h
;
loss
[
0
]
+=
SCE
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
;
loss
[
0
]
+=
SCE
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
;
loss
[
0
]
+=
L1Loss
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
;
loss
[
0
]
+=
L1Loss
<
T
>
(
input
[
box_idx
+
3
*
stride
],
th
)
*
scale
;
}
template
<
typename
T
>
static
void
CalcBoxLocationLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
Box
<
T
>
gt
,
std
::
vector
<
int
>
anchors
,
int
an_idx
,
int
box_idx
,
int
gi
,
int
gj
,
int
grid_size
,
int
input_size
,
int
stride
)
{
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
scale
=
2.0
-
gt
.
w
*
gt
.
h
;
input_grad
[
box_idx
]
=
SCEGrad
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
*
loss
;
input_grad
[
box_idx
+
stride
]
=
SCEGrad
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
*
loss
;
input_grad
[
box_idx
+
2
*
stride
]
=
L1LossGrad
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
*
loss
;
input_grad
[
box_idx
+
3
*
stride
]
=
L1LossGrad
<
T
>
(
input
[
box_idx
+
3
*
stride
],
th
)
*
scale
*
loss
;
}
template
<
typename
T
>
static
inline
void
CalcLabelLoss
(
T
*
loss
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
int
class_num
,
const
int
stride
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
loss
[
0
]
+=
SCE
<
T
>
(
input
[
index
+
i
*
stride
],
(
i
==
label
)
?
1.0
:
0.0
);
}
}
template
<
typename
T
>
static
inline
void
CalcLabelLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
int
class_num
,
const
int
stride
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
input_grad
[
index
+
i
*
stride
]
=
SCEGrad
<
T
>
(
input
[
index
+
i
*
stride
],
(
i
==
label
)
?
1.0
:
0.0
)
*
loss
;
}
}
template
<
typename
T
>
static
inline
void
CalcObjnessLoss
(
T
*
loss
,
const
T
*
input
,
const
int
*
objness
,
const
int
n
,
const
int
an_num
,
const
int
h
,
const
int
w
,
const
int
stride
,
const
int
an_stride
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>=
0
)
{
loss
[
i
]
+=
SCE
<
T
>
(
input
[
k
*
w
+
l
],
static_cast
<
T
>
(
obj
));
}
}
}
objness
+=
stride
;
input
+=
an_stride
;
}
}
}
template
<
typename
T
>
static
inline
void
CalcObjnessLossGrad
(
T
*
input_grad
,
const
T
*
loss
,
const
T
*
input
,
const
int
*
objness
,
const
int
n
,
const
int
an_num
,
const
int
h
,
const
int
w
,
const
int
stride
,
const
int
an_stride
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>=
0
)
{
input_grad
[
k
*
w
+
l
]
=
SCEGrad
<
T
>
(
input
[
k
*
w
+
l
],
static_cast
<
T
>
(
obj
))
*
loss
[
i
];
}
}
}
objness
+=
stride
;
input
+=
an_stride
;
input_grad
+=
an_stride
;
}
}
}
template
<
typename
T
>
template
<
typename
T
>
class
Yolov3LossKernel
:
public
framework
::
OpKernel
<
T
>
{
class
Yolov3LossKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -330,55 +506,158 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
...
@@ -330,55 +506,158 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
anchor_mask
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchor_mask"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
int
input_size
=
ctx
.
Attr
<
int
>
(
"input_size"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
int
downsample
=
ctx
.
Attr
<
int
>
(
"downsample"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
w
=
input
->
dims
()[
3
];
const
int
an_num
=
anchors
.
size
()
/
2
;
const
int
an_num
=
anchors
.
size
()
/
2
;
const
int
mask_num
=
anchor_mask
.
size
();
const
int
b
=
gt_box
->
dims
()[
1
];
int
input_size
=
downsample
*
h
;
Tensor
conf_mask
,
obj_mask
;
const
T
*
input_data
=
input
->
data
<
T
>
();
Tensor
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tclass
;
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
conf_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
obj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tx
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
ty
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tw
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
th
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tweight
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
constant
;
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
conf_mask
,
static_cast
<
T
>
(
1.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
obj_mask
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
tx
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
ty
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
tw
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
th
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
tweight
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
tconf
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
tclass
,
static_cast
<
T
>
(
0.0
));
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
input_size
,
h
,
&
conf_mask
,
&
obj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tweight
,
&
tconf
,
&
tclass
);
T
*
loss_data
=
loss
->
mutable_data
<
T
>
({
n
},
ctx
.
GetPlace
());
T
*
loss_data
=
loss
->
mutable_data
<
T
>
({
n
},
ctx
.
GetPlace
());
memset
(
loss_data
,
0
,
n
*
sizeof
(
T
));
memset
(
loss_data
,
0
,
n
*
sizeof
(
int
));
CalcYolov3Loss
<
T
>
(
loss_data
,
*
input
,
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tclass
,
conf_mask
,
obj_mask
);
Tensor
objness
;
int
*
objness_data
=
objness
.
mutable_data
<
int
>
({
n
,
mask_num
,
h
,
w
},
ctx
.
GetPlace
());
memset
(
objness_data
,
0
,
objness
.
numel
()
*
sizeof
(
int
));
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
mask_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
box_idx
=
entry_index
(
i
,
j
,
k
*
w
+
l
,
mask_num
,
an_stride
,
stride
,
0
);
Box
<
T
>
pred
=
get_yolo_box
(
input_data
,
anchors
,
l
,
k
,
anchor_mask
[
j
],
h
,
input_size
,
box_idx
,
stride
);
T
best_iou
=
0
;
// int best_t = 0;
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
if
(
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
])
&&
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
+
1
]))
{
continue
;
}
Box
<
T
>
gt
=
get_gt_box
(
gt_box_data
,
i
,
b
,
t
);
T
iou
=
box_iou
(
pred
,
gt
);
if
(
iou
>
best_iou
)
{
best_iou
=
iou
;
// best_t = t;
}
}
if
(
best_iou
>
ignore_thresh
)
{
int
obj_idx
=
(
i
*
mask_num
+
j
)
*
stride
+
k
*
w
+
l
;
objness_data
[
obj_idx
]
=
-
1
;
}
}
}
}
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
if
(
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
])
&&
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
+
1
]))
{
continue
;
}
Box
<
T
>
gt
=
get_gt_box
(
gt_box_data
,
i
,
b
,
t
);
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gj
=
static_cast
<
int
>
(
gt
.
y
*
h
);
Box
<
T
>
gt_shift
=
gt
;
gt_shift
.
x
=
0.0
;
gt_shift
.
y
=
0.0
;
T
best_iou
=
0.0
;
int
best_n
=
0
;
for
(
int
an_idx
=
0
;
an_idx
<
an_num
;
an_idx
++
)
{
Box
<
T
>
an_box
;
an_box
.
x
=
0.0
;
an_box
.
y
=
0.0
;
an_box
.
w
=
anchors
[
2
*
an_idx
]
/
static_cast
<
T
>
(
input_size
);
an_box
.
h
=
anchors
[
2
*
an_idx
+
1
]
/
static_cast
<
T
>
(
input_size
);
float
iou
=
box_iou
<
T
>
(
an_box
,
gt_shift
);
// TO DO: iou > 0.5 ?
if
(
iou
>
best_iou
)
{
best_iou
=
iou
;
best_n
=
an_idx
;
}
}
int
mask_idx
=
mask_index
(
anchor_mask
,
best_n
);
if
(
mask_idx
>=
0
)
{
int
box_idx
=
entry_index
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
CalcBoxLocationLoss
<
T
>
(
loss_data
+
i
,
input_data
,
gt
,
anchors
,
best_n
,
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
int
obj_idx
=
(
i
*
mask_num
+
mask_idx
)
*
stride
+
gj
*
w
+
gi
;
objness_data
[
obj_idx
]
=
1
;
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
entry_index
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLoss
<
T
>
(
loss_data
+
i
,
input_data
,
label_idx
,
label
,
class_num
,
stride
);
}
}
}
CalcObjnessLoss
<
T
>
(
loss_data
,
input_data
+
4
*
stride
,
objness_data
,
n
,
mask_num
,
h
,
w
,
stride
,
an_stride
);
// Tensor conf_mask, obj_mask;
// Tensor tx, ty, tw, th, tweight, tconf, tclass;
// conf_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// obj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tweight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
//
// math::SetConstant<platform::CPUDeviceContext, T> constant;
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &conf_mask, static_cast<T>(1.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &obj_mask, static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &tx,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &ty,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &tw,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &th,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &tweight, static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &tconf,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &tclass,
// static_cast<T>(0.0));
//
// PreProcessGTBox<T>(*gt_box, *gt_label, ignore_thresh, anchors,
// input_size,
// h, &conf_mask, &obj_mask, &tx, &ty, &tw, &th,
// &tweight,
// &tconf, &tclass);
//
// T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
// memset(loss_data, 0, n * sizeof(T));
// CalcYolov3Loss<T>(loss_data, *input, tx, ty, tw, th, tweight, tconf,
// tclass,
// conf_mask, obj_mask);
}
}
};
};
...
@@ -389,59 +668,172 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
...
@@ -389,59 +668,172 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
anchor_mask
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchor_mask"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
int
downsample
=
ctx
.
Attr
<
int
>
(
"downsample"
);
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
int
input_size
=
ctx
.
Attr
<
int
>
(
"input_size"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
c
=
input
->
dims
()[
1
];
const
int
h
=
input
->
dims
()[
2
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
w
=
input
->
dims
()[
3
];
const
int
an_num
=
anchors
.
size
()
/
2
;
const
int
an_num
=
anchors
.
size
()
/
2
;
const
int
mask_num
=
anchor_mask
.
size
();
Tensor
conf_mask
,
obj_mask
;
const
int
b
=
gt_box
->
dims
()[
1
];
Tensor
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tclass
;
int
input_size
=
downsample
*
h
;
conf_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
obj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
const
T
*
input_data
=
input
->
data
<
T
>
();
tx
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
ty
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
tw
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
const
T
*
loss_grad_data
=
loss_grad
->
data
<
T
>
();
th
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tweight
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
constant
;
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
conf_mask
,
static_cast
<
T
>
(
1.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
obj_mask
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
tx
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
ty
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
tw
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
th
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
tweight
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
tconf
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
tclass
,
static_cast
<
T
>
(
0.0
));
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
input_size
,
h
,
&
conf_mask
,
&
obj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tweight
,
&
tconf
,
&
tclass
);
T
*
input_grad_data
=
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
CalcYolov3LossGrad
<
T
>
(
input_grad_data
,
*
loss_grad
,
*
input
,
tx
,
ty
,
tw
,
th
,
memset
(
input_grad_data
,
0
,
input_grad
->
numel
()
*
sizeof
(
T
));
tweight
,
tconf
,
tclass
,
conf_mask
,
obj_mask
);
Tensor
objness
;
int
*
objness_data
=
objness
.
mutable_data
<
int
>
({
n
,
mask_num
,
h
,
w
},
ctx
.
GetPlace
());
memset
(
objness_data
,
0
,
objness
.
numel
()
*
sizeof
(
int
));
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
mask_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
box_idx
=
entry_index
(
i
,
j
,
k
*
w
+
l
,
mask_num
,
an_stride
,
stride
,
0
);
Box
<
T
>
pred
=
get_yolo_box
(
input_data
,
anchors
,
l
,
k
,
anchor_mask
[
j
],
h
,
input_size
,
box_idx
,
stride
);
T
best_iou
=
0
;
// int best_t = 0;
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
if
(
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
])
&&
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
+
1
]))
{
continue
;
}
Box
<
T
>
gt
=
get_gt_box
(
gt_box_data
,
i
,
b
,
t
);
T
iou
=
box_iou
(
pred
,
gt
);
if
(
iou
>
best_iou
)
{
best_iou
=
iou
;
// best_t = t;
}
}
if
(
best_iou
>
ignore_thresh
)
{
int
obj_idx
=
(
i
*
mask_num
+
j
)
*
stride
+
k
*
w
+
l
;
objness_data
[
obj_idx
]
=
-
1
;
}
}
}
}
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
if
(
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
])
&&
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
+
1
]))
{
continue
;
}
Box
<
T
>
gt
=
get_gt_box
(
gt_box_data
,
i
,
b
,
t
);
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gj
=
static_cast
<
int
>
(
gt
.
y
*
h
);
Box
<
T
>
gt_shift
=
gt
;
gt_shift
.
x
=
0.0
;
gt_shift
.
y
=
0.0
;
T
best_iou
=
0.0
;
int
best_n
=
0
;
for
(
int
an_idx
=
0
;
an_idx
<
an_num
;
an_idx
++
)
{
Box
<
T
>
an_box
;
an_box
.
x
=
0.0
;
an_box
.
y
=
0.0
;
an_box
.
w
=
anchors
[
2
*
an_idx
]
/
static_cast
<
T
>
(
input_size
);
an_box
.
h
=
anchors
[
2
*
an_idx
+
1
]
/
static_cast
<
T
>
(
input_size
);
float
iou
=
box_iou
<
T
>
(
an_box
,
gt_shift
);
// TO DO: iou > 0.5 ?
if
(
iou
>
best_iou
)
{
best_iou
=
iou
;
best_n
=
an_idx
;
}
}
int
mask_idx
=
mask_index
(
anchor_mask
,
best_n
);
if
(
mask_idx
>=
0
)
{
int
box_idx
=
entry_index
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
CalcBoxLocationLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
gt
,
anchors
,
best_n
,
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
int
obj_idx
=
(
i
*
mask_num
+
mask_idx
)
*
stride
+
gj
*
w
+
gi
;
objness_data
[
obj_idx
]
=
1
;
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
entry_index
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
label_idx
,
label
,
class_num
,
stride
);
}
}
}
CalcObjnessLossGrad
<
T
>
(
input_grad_data
+
4
*
stride
,
loss_grad_data
,
input_data
+
4
*
stride
,
objness_data
,
n
,
mask_num
,
h
,
w
,
stride
,
an_stride
);
// const int n = input->dims()[0];
// const int c = input->dims()[1];
// const int h = input->dims()[2];
// const int w = input->dims()[3];
// const int an_num = anchors.size() / 2;
//
// Tensor conf_mask, obj_mask;
// Tensor tx, ty, tw, th, tweight, tconf, tclass;
// conf_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// obj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tweight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
//
// math::SetConstant<platform::CPUDeviceContext, T> constant;
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &conf_mask, static_cast<T>(1.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &obj_mask, static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &tx,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &ty,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &tw,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &th,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &tweight, static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &tconf,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &tclass,
// static_cast<T>(0.0));
//
// PreProcessGTBox<T>(*gt_box, *gt_label, ignore_thresh, anchors,
// input_size,
// h, &conf_mask, &obj_mask, &tx, &ty, &tw, &th,
// &tweight,
// &tconf, &tclass);
//
// T* input_grad_data =
// input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
// CalcYolov3LossGrad<T>(input_grad_data, *loss_grad, *input, tx, ty, tw,
// th,
// tweight, tconf, tclass, conf_mask, obj_mask);
}
}
};
};
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
e7e4f084
...
@@ -413,9 +413,10 @@ def yolov3_loss(x,
...
@@ -413,9 +413,10 @@ def yolov3_loss(x,
gtbox
,
gtbox
,
gtlabel
,
gtlabel
,
anchors
,
anchors
,
anchor_mask
,
class_num
,
class_num
,
ignore_thresh
,
ignore_thresh
,
input_siz
e
,
downsampl
e
,
name
=
None
):
name
=
None
):
"""
"""
${comment}
${comment}
...
@@ -430,9 +431,10 @@ def yolov3_loss(x,
...
@@ -430,9 +431,10 @@ def yolov3_loss(x,
gtlabel (Variable): class id of ground truth boxes, shoud be ins shape
gtlabel (Variable): class id of ground truth boxes, shoud be ins shape
of [N, B].
of [N, B].
anchors (list|tuple): ${anchors_comment}
anchors (list|tuple): ${anchors_comment}
anchor_mask (list|tuple): ${anchor_mask_comment}
class_num (int): ${class_num_comment}
class_num (int): ${class_num_comment}
ignore_thresh (float): ${ignore_thresh_comment}
ignore_thresh (float): ${ignore_thresh_comment}
input_size (int): ${input_siz
e_comment}
downsample (int): ${downsampl
e_comment}
name (string): the name of yolov3 loss
name (string): the name of yolov3 loss
Returns:
Returns:
...
@@ -452,7 +454,8 @@ def yolov3_loss(x,
...
@@ -452,7 +454,8 @@ def yolov3_loss(x,
x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
gtbox = fluid.layers.data(name='gtbox', shape=[6, 5], dtype='float32')
gtbox = fluid.layers.data(name='gtbox', shape=[6, 5], dtype='float32')
gtlabel = fluid.layers.data(name='gtlabel', shape=[6, 1], dtype='int32')
gtlabel = fluid.layers.data(name='gtlabel', shape=[6, 1], dtype='int32')
anchors = [10, 13, 16, 30, 33, 23]
anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
anchors = [0, 1, 2]
loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, class_num=80
loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, class_num=80
anchors=anchors, ignore_thresh=0.5)
anchors=anchors, ignore_thresh=0.5)
"""
"""
...
@@ -466,6 +469,8 @@ def yolov3_loss(x,
...
@@ -466,6 +469,8 @@ def yolov3_loss(x,
raise
TypeError
(
"Input gtlabel of yolov3_loss must be Variable"
)
raise
TypeError
(
"Input gtlabel of yolov3_loss must be Variable"
)
if
not
isinstance
(
anchors
,
list
)
and
not
isinstance
(
anchors
,
tuple
):
if
not
isinstance
(
anchors
,
list
)
and
not
isinstance
(
anchors
,
tuple
):
raise
TypeError
(
"Attr anchors of yolov3_loss must be list or tuple"
)
raise
TypeError
(
"Attr anchors of yolov3_loss must be list or tuple"
)
if
not
isinstance
(
anchor_mask
,
list
)
and
not
isinstance
(
anchor_mask
,
tuple
):
raise
TypeError
(
"Attr anchor_mask of yolov3_loss must be list or tuple"
)
if
not
isinstance
(
class_num
,
int
):
if
not
isinstance
(
class_num
,
int
):
raise
TypeError
(
"Attr class_num of yolov3_loss must be an integer"
)
raise
TypeError
(
"Attr class_num of yolov3_loss must be an integer"
)
if
not
isinstance
(
ignore_thresh
,
float
):
if
not
isinstance
(
ignore_thresh
,
float
):
...
@@ -480,9 +485,10 @@ def yolov3_loss(x,
...
@@ -480,9 +485,10 @@ def yolov3_loss(x,
attrs
=
{
attrs
=
{
"anchors"
:
anchors
,
"anchors"
:
anchors
,
"anchor_mask"
:
anchor_mask
,
"class_num"
:
class_num
,
"class_num"
:
class_num
,
"ignore_thresh"
:
ignore_thresh
,
"ignore_thresh"
:
ignore_thresh
,
"
input_size"
:
input_siz
e
,
"
downsample"
:
downsampl
e
,
}
}
helper
.
append_op
(
helper
.
append_op
(
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
e7e4f084
...
@@ -463,8 +463,8 @@ class TestYoloDetection(unittest.TestCase):
...
@@ -463,8 +463,8 @@ class TestYoloDetection(unittest.TestCase):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
30
,
7
,
7
],
dtype
=
'float32'
)
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
30
,
7
,
7
],
dtype
=
'float32'
)
gtbox
=
layers
.
data
(
name
=
'gtbox'
,
shape
=
[
10
,
4
],
dtype
=
'float32'
)
gtbox
=
layers
.
data
(
name
=
'gtbox'
,
shape
=
[
10
,
4
],
dtype
=
'float32'
)
gtlabel
=
layers
.
data
(
name
=
'gtlabel'
,
shape
=
[
10
],
dtype
=
'int32'
)
gtlabel
=
layers
.
data
(
name
=
'gtlabel'
,
shape
=
[
10
],
dtype
=
'int32'
)
loss
=
layers
.
yolov3_loss
(
x
,
gtbox
,
gtlabel
,
[
10
,
13
,
30
,
13
],
10
,
loss
=
layers
.
yolov3_loss
(
x
,
gtbox
,
gtlabel
,
[
10
,
13
,
30
,
13
],
0.7
,
416
)
[
0
,
1
],
10
,
0.7
,
32
)
self
.
assertIsNotNone
(
loss
)
self
.
assertIsNotNone
(
loss
)
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
e7e4f084
...
@@ -22,32 +22,42 @@ from op_test import OpTest
...
@@ -22,32 +22,42 @@ from op_test import OpTest
from
paddle.fluid
import
core
from
paddle.fluid
import
core
# def l1loss(x, y, weight):
def
l1loss
(
x
,
y
,
weight
):
# n = x.shape[0]
n
=
x
.
shape
[
0
]
# x = x.reshape((n, -1))
x
=
x
.
reshape
((
n
,
-
1
))
# y = y.reshape((n, -1))
y
=
y
.
reshape
((
n
,
-
1
))
# weight = weight.reshape((n, -1))
weight
=
weight
.
reshape
((
n
,
-
1
))
# return (np.abs(y - x) * weight).sum(axis=1)
return
(
np
.
abs
(
y
-
x
)
*
weight
).
sum
(
axis
=
1
)
#
#
# def mse(x, y, weight):
# n = x.shape[0]
# x = x.reshape((n, -1))
# y = y.reshape((n, -1))
# weight = weight.reshape((n, -1))
# return ((y - x)**2 * weight).sum(axis=1)
#
#
# def sce(x, label, weight):
# n = x.shape[0]
# x = x.reshape((n, -1))
# label = label.reshape((n, -1))
# weight = weight.reshape((n, -1))
# sigmoid_x = expit(x)
# term1 = label * np.log(sigmoid_x)
# term2 = (1.0 - label) * np.log(1.0 - sigmoid_x)
# return ((-term1 - term2) * weight).sum(axis=1)
def
mse
(
x
,
y
,
weight
):
def
l1loss
(
x
,
y
):
n
=
x
.
shape
[
0
]
return
abs
(
x
-
y
)
x
=
x
.
reshape
((
n
,
-
1
))
y
=
y
.
reshape
((
n
,
-
1
))
weight
=
weight
.
reshape
((
n
,
-
1
))
return
((
y
-
x
)
**
2
*
weight
).
sum
(
axis
=
1
)
def
sce
(
x
,
label
,
weight
):
def
sce
(
x
,
label
):
n
=
x
.
shape
[
0
]
x
=
x
.
reshape
((
n
,
-
1
))
label
=
label
.
reshape
((
n
,
-
1
))
weight
=
weight
.
reshape
((
n
,
-
1
))
sigmoid_x
=
expit
(
x
)
sigmoid_x
=
expit
(
x
)
term1
=
label
*
np
.
log
(
sigmoid_x
)
term1
=
label
*
np
.
log
(
sigmoid_x
)
term2
=
(
1.0
-
label
)
*
np
.
log
(
1.0
-
sigmoid_x
)
term2
=
(
1.0
-
label
)
*
np
.
log
(
1.0
-
sigmoid_x
)
return
((
-
term1
-
term2
)
*
weight
).
sum
(
axis
=
1
)
return
-
term1
-
term2
def
box_iou
(
box1
,
box2
):
def
box_iou
(
box1
,
box2
):
...
@@ -160,6 +170,121 @@ def YoloV3Loss(x, gtbox, gtlabel, attrs):
...
@@ -160,6 +170,121 @@ def YoloV3Loss(x, gtbox, gtlabel, attrs):
return
loss_x
+
loss_y
+
loss_w
+
loss_h
+
loss_obj
+
loss_class
return
loss_x
+
loss_y
+
loss_w
+
loss_h
+
loss_obj
+
loss_class
def
sigmoid
(
x
):
return
1.0
/
(
1.0
+
np
.
exp
(
-
1.0
*
x
))
def
batch_xywh_box_iou
(
box1
,
box2
):
b1_left
=
box1
[:,
:,
0
]
-
box1
[:,
:,
2
]
/
2
b1_right
=
box1
[:,
:,
0
]
+
box1
[:,
:,
2
]
/
2
b1_top
=
box1
[:,
:,
1
]
-
box1
[:,
:,
3
]
/
2
b1_bottom
=
box1
[:,
:,
1
]
+
box1
[:,
:,
3
]
/
2
b2_left
=
box2
[:,
:,
0
]
-
box2
[:,
:,
2
]
/
2
b2_right
=
box2
[:,
:,
0
]
+
box2
[:,
:,
2
]
/
2
b2_top
=
box2
[:,
:,
1
]
-
box2
[:,
:,
3
]
/
2
b2_bottom
=
box2
[:,
:,
1
]
+
box2
[:,
:,
3
]
/
2
left
=
np
.
maximum
(
b1_left
[:,
:,
np
.
newaxis
],
b2_left
[:,
np
.
newaxis
,
:])
right
=
np
.
minimum
(
b1_right
[:,
:,
np
.
newaxis
],
b2_right
[:,
np
.
newaxis
,
:])
top
=
np
.
maximum
(
b1_top
[:,
:,
np
.
newaxis
],
b2_top
[:,
np
.
newaxis
,
:])
bottom
=
np
.
minimum
(
b1_bottom
[:,
:,
np
.
newaxis
],
b2_bottom
[:,
np
.
newaxis
,
:])
inter_w
=
np
.
clip
(
right
-
left
,
0.
,
1.
)
inter_h
=
np
.
clip
(
bottom
-
top
,
0.
,
1.
)
inter_area
=
inter_w
*
inter_h
b1_area
=
(
b1_right
-
b1_left
)
*
(
b1_bottom
-
b1_top
)
b2_area
=
(
b2_right
-
b2_left
)
*
(
b2_bottom
-
b2_top
)
union
=
b1_area
[:,
:,
np
.
newaxis
]
+
b2_area
[:,
np
.
newaxis
,
:]
-
inter_area
return
inter_area
/
union
def
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
attrs
):
n
,
c
,
h
,
w
=
x
.
shape
b
=
gtbox
.
shape
[
1
]
anchors
=
attrs
[
'anchors'
]
an_num
=
len
(
anchors
)
//
2
anchor_mask
=
attrs
[
'anchor_mask'
]
mask_num
=
len
(
anchor_mask
)
class_num
=
attrs
[
"class_num"
]
ignore_thresh
=
attrs
[
'ignore_thresh'
]
downsample
=
attrs
[
'downsample'
]
input_size
=
downsample
*
h
x
=
x
.
reshape
((
n
,
mask_num
,
5
+
class_num
,
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
loss
=
np
.
zeros
((
n
)).
astype
(
'float32'
)
pred_box
=
x
[:,
:,
:,
:,
:
4
].
copy
()
grid_x
=
np
.
tile
(
np
.
arange
(
w
).
reshape
((
1
,
w
)),
(
h
,
1
))
grid_y
=
np
.
tile
(
np
.
arange
(
h
).
reshape
((
h
,
1
)),
(
1
,
w
))
pred_box
[:,
:,
:,
:,
0
]
=
(
grid_x
+
sigmoid
(
pred_box
[:,
:,
:,
:,
0
]))
/
w
pred_box
[:,
:,
:,
:,
1
]
=
(
grid_y
+
sigmoid
(
pred_box
[:,
:,
:,
:,
1
]))
/
h
mask_anchors
=
[]
for
m
in
anchor_mask
:
mask_anchors
.
append
((
anchors
[
2
*
m
],
anchors
[
2
*
m
+
1
]))
anchors_s
=
np
.
array
(
[(
an_w
/
input_size
,
an_h
/
input_size
)
for
an_w
,
an_h
in
mask_anchors
])
anchor_w
=
anchors_s
[:,
0
:
1
].
reshape
((
1
,
mask_num
,
1
,
1
))
anchor_h
=
anchors_s
[:,
1
:
2
].
reshape
((
1
,
mask_num
,
1
,
1
))
pred_box
[:,
:,
:,
:,
2
]
=
np
.
exp
(
pred_box
[:,
:,
:,
:,
2
])
*
anchor_w
pred_box
[:,
:,
:,
:,
3
]
=
np
.
exp
(
pred_box
[:,
:,
:,
:,
3
])
*
anchor_h
pred_box
=
pred_box
.
reshape
((
n
,
-
1
,
4
))
pred_obj
=
x
[:,
:,
:,
:,
4
].
reshape
((
n
,
-
1
))
objness
=
np
.
zeros
(
pred_box
.
shape
[:
2
])
ious
=
batch_xywh_box_iou
(
pred_box
,
gtbox
)
ious_max
=
np
.
max
(
ious
,
axis
=-
1
)
objness
=
np
.
where
(
ious_max
>
ignore_thresh
,
-
np
.
ones_like
(
objness
),
objness
)
gtbox_shift
=
gtbox
.
copy
()
gtbox_shift
[:,
:,
0
]
=
0
gtbox_shift
[:,
:,
1
]
=
0
anchors
=
[(
anchors
[
2
*
i
],
anchors
[
2
*
i
+
1
])
for
i
in
range
(
0
,
an_num
)]
anchors_s
=
np
.
array
(
[(
an_w
/
input_size
,
an_h
/
input_size
)
for
an_w
,
an_h
in
anchors
])
anchor_boxes
=
np
.
concatenate
(
[
np
.
zeros_like
(
anchors_s
),
anchors_s
],
axis
=-
1
)
anchor_boxes
=
np
.
tile
(
anchor_boxes
[
np
.
newaxis
,
:,
:],
(
n
,
1
,
1
))
ious
=
batch_xywh_box_iou
(
gtbox_shift
,
anchor_boxes
)
iou_matches
=
np
.
argmax
(
ious
,
axis
=-
1
)
for
i
in
range
(
n
):
for
j
in
range
(
b
):
if
gtbox
[
i
,
j
,
2
:].
sum
()
==
0
:
continue
if
iou_matches
[
i
,
j
]
not
in
anchor_mask
:
continue
an_idx
=
anchor_mask
.
index
(
iou_matches
[
i
,
j
])
gi
=
int
(
gtbox
[
i
,
j
,
0
]
*
w
)
gj
=
int
(
gtbox
[
i
,
j
,
1
]
*
h
)
tx
=
gtbox
[
i
,
j
,
0
]
*
w
-
gi
ty
=
gtbox
[
i
,
j
,
1
]
*
w
-
gj
tw
=
np
.
log
(
gtbox
[
i
,
j
,
2
]
*
input_size
/
mask_anchors
[
an_idx
][
0
])
th
=
np
.
log
(
gtbox
[
i
,
j
,
3
]
*
input_size
/
mask_anchors
[
an_idx
][
1
])
scale
=
2.0
-
gtbox
[
i
,
j
,
2
]
*
gtbox
[
i
,
j
,
3
]
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
0
],
tx
)
*
scale
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
1
],
ty
)
*
scale
loss
[
i
]
+=
l1loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
2
],
tw
)
*
scale
loss
[
i
]
+=
l1loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
3
],
th
)
*
scale
objness
[
i
,
an_idx
*
h
*
w
+
gj
*
w
+
gi
]
=
1
for
label_idx
in
range
(
class_num
):
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
5
+
label_idx
],
int
(
label_idx
==
gtlabel
[
i
,
j
]))
for
j
in
range
(
mask_num
*
h
*
w
):
if
objness
[
i
,
j
]
>=
0
:
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
objness
[
i
,
j
])
return
loss
class
TestYolov3LossOp
(
OpTest
):
class
TestYolov3LossOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
initTestCase
()
...
@@ -171,13 +296,14 @@ class TestYolov3LossOp(OpTest):
...
@@ -171,13 +296,14 @@ class TestYolov3LossOp(OpTest):
self
.
attrs
=
{
self
.
attrs
=
{
"anchors"
:
self
.
anchors
,
"anchors"
:
self
.
anchors
,
"anchor_mask"
:
self
.
anchor_mask
,
"class_num"
:
self
.
class_num
,
"class_num"
:
self
.
class_num
,
"ignore_thresh"
:
self
.
ignore_thresh
,
"ignore_thresh"
:
self
.
ignore_thresh
,
"
input_size"
:
self
.
input_siz
e
,
"
downsample"
:
self
.
downsampl
e
,
}
}
self
.
inputs
=
{
'X'
:
x
,
'GTBox'
:
gtbox
,
'GTLabel'
:
gtlabel
}
self
.
inputs
=
{
'X'
:
x
,
'GTBox'
:
gtbox
,
'GTLabel'
:
gtlabel
}
self
.
outputs
=
{
'Loss'
:
Y
oloV
3Loss
(
x
,
gtbox
,
gtlabel
,
self
.
attrs
)}
self
.
outputs
=
{
'Loss'
:
Y
OLOv
3Loss
(
x
,
gtbox
,
gtlabel
,
self
.
attrs
)}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
place
=
core
.
CPUPlace
()
place
=
core
.
CPUPlace
()
...
@@ -189,15 +315,19 @@ class TestYolov3LossOp(OpTest):
...
@@ -189,15 +315,19 @@ class TestYolov3LossOp(OpTest):
place
,
[
'X'
],
place
,
[
'X'
],
'Loss'
,
'Loss'
,
no_grad_set
=
set
([
"GTBox"
,
"GTLabel"
]),
no_grad_set
=
set
([
"GTBox"
,
"GTLabel"
]),
max_relative_error
=
0.
31
)
max_relative_error
=
0.
15
)
def
initTestCase
(
self
):
def
initTestCase
(
self
):
self
.
anchors
=
[
12
,
12
]
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
,
30
,
61
,
62
,
45
,
59
,
119
,
116
,
90
,
156
,
198
,
373
,
326
]
self
.
anchor_mask
=
[
0
,
1
,
2
]
self
.
class_num
=
5
self
.
class_num
=
5
self
.
ignore_thresh
=
0.
5
self
.
ignore_thresh
=
0.
7
self
.
input_size
=
416
self
.
downsample
=
32
self
.
x_shape
=
(
1
,
len
(
self
.
anchors
)
//
2
*
(
5
+
self
.
class_num
),
3
,
3
)
self
.
x_shape
=
(
3
,
len
(
self
.
anchor_mask
)
*
(
5
+
self
.
class_num
),
5
,
5
)
self
.
gtbox_shape
=
(
1
,
5
,
4
)
self
.
gtbox_shape
=
(
3
,
10
,
4
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录