Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
e6919efd
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e6919efd
编写于
6月 23, 2021
作者:
W
Wenyu
提交者:
GitHub
6月 23, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Random resize crop (#3465)
* add random resize and crop * update * update
上级
1f34af72
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
256 addition
and
0 deletion
+256
-0
ppdet/data/transform/operators.py
ppdet/data/transform/operators.py
+256
-0
未找到文件。
ppdet/data/transform/operators.py
浏览文件 @
e6919efd
...
@@ -2094,3 +2094,259 @@ class BboxCXCYWH2XYXY(BaseOperator):
...
@@ -2094,3 +2094,259 @@ class BboxCXCYWH2XYXY(BaseOperator):
bbox
[:,
2
:
4
]
=
bbox0
[:,
:
2
]
+
bbox0
[:,
2
:
4
]
/
2.
bbox
[:,
2
:
4
]
=
bbox0
[:,
:
2
]
+
bbox0
[:,
2
:
4
]
/
2.
sample
[
'gt_bbox'
]
=
bbox
sample
[
'gt_bbox'
]
=
bbox
return
sample
return
sample
@
register_op
class
RandomResizeCrop
(
BaseOperator
):
"""Random resize and crop image and bboxes.
Args:
resizes (list): resize image to one of resizes. if keep_ratio is True and mode is
'long', resize the image's long side to the maximum of target_size, if keep_ratio is
True and mode is 'short', resize the image's short side to the minimum of target_size.
cropsizes (list): crop sizes after resize, [(min_crop_1, max_crop_1), ...]
mode (str): resize mode, `long` or `short`. Details see resizes.
prob (float): probability of this op.
keep_ratio (bool): whether keep_ratio or not, default true
interp (int): the interpolation method
thresholds (list): iou thresholds for decide a valid bbox crop.
num_attempts (int): number of tries before giving up.
allow_no_crop (bool): allow return without actually cropping them.
cover_all_box (bool): ensure all bboxes are covered in the final crop.
is_mask_crop(bool): whether crop the segmentation.
"""
def
__init__
(
self
,
resizes
,
cropsizes
,
prob
=
0.5
,
mode
=
'short'
,
keep_ratio
=
True
,
interp
=
cv2
.
INTER_LINEAR
,
num_attempts
=
3
,
cover_all_box
=
False
,
allow_no_crop
=
False
,
thresholds
=
[
0.3
,
0.5
,
0.7
],
is_mask_crop
=
False
,
):
super
(
RandomResizeCrop
,
self
).
__init__
()
self
.
resizes
=
resizes
self
.
cropsizes
=
cropsizes
self
.
prob
=
prob
self
.
mode
=
mode
self
.
resizer
=
Resize
(
0
,
keep_ratio
=
keep_ratio
,
interp
=
interp
)
self
.
croper
=
RandomCrop
(
num_attempts
=
num_attempts
,
cover_all_box
=
cover_all_box
,
thresholds
=
thresholds
,
allow_no_crop
=
allow_no_crop
,
is_mask_crop
=
is_mask_crop
)
def
_format_size
(
self
,
size
):
if
isinstance
(
size
,
Integral
):
size
=
(
size
,
size
)
return
size
def
apply
(
self
,
sample
,
context
=
None
):
if
random
.
random
()
<
self
.
prob
:
_resize
=
self
.
_format_size
(
random
.
choice
(
self
.
resizes
))
_cropsize
=
self
.
_format_size
(
random
.
choice
(
self
.
cropsizes
))
sample
=
self
.
_resize
(
self
.
resizer
,
sample
,
size
=
_resize
,
mode
=
self
.
mode
,
context
=
context
)
sample
=
self
.
_random_crop
(
self
.
croper
,
sample
,
size
=
_cropsize
,
context
=
context
)
return
sample
@
staticmethod
def
_random_crop
(
croper
,
sample
,
size
,
context
=
None
):
if
'gt_bbox'
in
sample
and
len
(
sample
[
'gt_bbox'
])
==
0
:
return
sample
self
=
croper
h
,
w
=
sample
[
'image'
].
shape
[:
2
]
gt_bbox
=
sample
[
'gt_bbox'
]
cropsize
=
size
min_crop
=
min
(
cropsize
)
max_crop
=
max
(
cropsize
)
thresholds
=
list
(
self
.
thresholds
)
np
.
random
.
shuffle
(
thresholds
)
for
thresh
in
thresholds
:
found
=
False
for
_
in
range
(
self
.
num_attempts
):
crop_h
=
random
.
randint
(
min_crop
,
min
(
h
,
max_crop
))
crop_w
=
random
.
randint
(
min_crop
,
min
(
w
,
max_crop
))
crop_y
=
random
.
randint
(
0
,
h
-
crop_h
)
crop_x
=
random
.
randint
(
0
,
w
-
crop_w
)
crop_box
=
[
crop_x
,
crop_y
,
crop_x
+
crop_w
,
crop_y
+
crop_h
]
iou
=
self
.
_iou_matrix
(
gt_bbox
,
np
.
array
(
[
crop_box
],
dtype
=
np
.
float32
))
if
iou
.
max
()
<
thresh
:
continue
if
self
.
cover_all_box
and
iou
.
min
()
<
thresh
:
continue
cropped_box
,
valid_ids
=
self
.
_crop_box_with_center_constraint
(
gt_bbox
,
np
.
array
(
crop_box
,
dtype
=
np
.
float32
))
if
valid_ids
.
size
>
0
:
found
=
True
break
if
found
:
if
self
.
is_mask_crop
and
'gt_poly'
in
sample
and
len
(
sample
[
'gt_poly'
])
>
0
:
crop_polys
=
self
.
crop_segms
(
sample
[
'gt_poly'
],
valid_ids
,
np
.
array
(
crop_box
,
dtype
=
np
.
int64
),
h
,
w
)
if
[]
in
crop_polys
:
delete_id
=
list
()
valid_polys
=
list
()
for
id
,
crop_poly
in
enumerate
(
crop_polys
):
if
crop_poly
==
[]:
delete_id
.
append
(
id
)
else
:
valid_polys
.
append
(
crop_poly
)
valid_ids
=
np
.
delete
(
valid_ids
,
delete_id
)
if
len
(
valid_polys
)
==
0
:
return
sample
sample
[
'gt_poly'
]
=
valid_polys
else
:
sample
[
'gt_poly'
]
=
crop_polys
if
'gt_segm'
in
sample
:
sample
[
'gt_segm'
]
=
self
.
_crop_segm
(
sample
[
'gt_segm'
],
crop_box
)
sample
[
'gt_segm'
]
=
np
.
take
(
sample
[
'gt_segm'
],
valid_ids
,
axis
=
0
)
sample
[
'image'
]
=
self
.
_crop_image
(
sample
[
'image'
],
crop_box
)
sample
[
'gt_bbox'
]
=
np
.
take
(
cropped_box
,
valid_ids
,
axis
=
0
)
sample
[
'gt_class'
]
=
np
.
take
(
sample
[
'gt_class'
],
valid_ids
,
axis
=
0
)
if
'gt_score'
in
sample
:
sample
[
'gt_score'
]
=
np
.
take
(
sample
[
'gt_score'
],
valid_ids
,
axis
=
0
)
if
'is_crowd'
in
sample
:
sample
[
'is_crowd'
]
=
np
.
take
(
sample
[
'is_crowd'
],
valid_ids
,
axis
=
0
)
return
sample
return
sample
@
staticmethod
def
_resize
(
resizer
,
sample
,
size
,
mode
=
'short'
,
context
=
None
):
self
=
resizer
im
=
sample
[
'image'
]
target_size
=
size
if
not
isinstance
(
im
,
np
.
ndarray
):
raise
TypeError
(
"{}: image type is not numpy."
.
format
(
self
))
if
len
(
im
.
shape
)
!=
3
:
raise
ImageError
(
'{}: image is not 3-dimensional.'
.
format
(
self
))
# apply image
im_shape
=
im
.
shape
if
self
.
keep_ratio
:
im_size_min
=
np
.
min
(
im_shape
[
0
:
2
])
im_size_max
=
np
.
max
(
im_shape
[
0
:
2
])
target_size_min
=
np
.
min
(
target_size
)
target_size_max
=
np
.
max
(
target_size
)
if
mode
==
'long'
:
im_scale
=
min
(
target_size_min
/
im_size_min
,
target_size_max
/
im_size_max
)
else
:
im_scale
=
max
(
target_size_min
/
im_size_min
,
target_size_max
/
im_size_max
)
resize_h
=
im_scale
*
float
(
im_shape
[
0
])
resize_w
=
im_scale
*
float
(
im_shape
[
1
])
im_scale_x
=
im_scale
im_scale_y
=
im_scale
else
:
resize_h
,
resize_w
=
target_size
im_scale_y
=
resize_h
/
im_shape
[
0
]
im_scale_x
=
resize_w
/
im_shape
[
1
]
im
=
self
.
apply_image
(
sample
[
'image'
],
[
im_scale_x
,
im_scale_y
])
sample
[
'image'
]
=
im
sample
[
'im_shape'
]
=
np
.
asarray
([
resize_h
,
resize_w
],
dtype
=
np
.
float32
)
if
'scale_factor'
in
sample
:
scale_factor
=
sample
[
'scale_factor'
]
sample
[
'scale_factor'
]
=
np
.
asarray
(
[
scale_factor
[
0
]
*
im_scale_y
,
scale_factor
[
1
]
*
im_scale_x
],
dtype
=
np
.
float32
)
else
:
sample
[
'scale_factor'
]
=
np
.
asarray
(
[
im_scale_y
,
im_scale_x
],
dtype
=
np
.
float32
)
# apply bbox
if
'gt_bbox'
in
sample
and
len
(
sample
[
'gt_bbox'
])
>
0
:
sample
[
'gt_bbox'
]
=
self
.
apply_bbox
(
sample
[
'gt_bbox'
],
[
im_scale_x
,
im_scale_y
],
[
resize_w
,
resize_h
])
# apply rbox
if
'gt_rbox2poly'
in
sample
:
if
np
.
array
(
sample
[
'gt_rbox2poly'
]).
shape
[
1
]
!=
8
:
logger
.
warn
(
"gt_rbox2poly's length shoule be 8, but actually is {}"
.
format
(
len
(
sample
[
'gt_rbox2poly'
])))
sample
[
'gt_rbox2poly'
]
=
self
.
apply_bbox
(
sample
[
'gt_rbox2poly'
],
[
im_scale_x
,
im_scale_y
],
[
resize_w
,
resize_h
])
# apply polygon
if
'gt_poly'
in
sample
and
len
(
sample
[
'gt_poly'
])
>
0
:
sample
[
'gt_poly'
]
=
self
.
apply_segm
(
sample
[
'gt_poly'
],
im_shape
[:
2
],
[
im_scale_x
,
im_scale_y
])
# apply semantic
if
'semantic'
in
sample
and
sample
[
'semantic'
]:
semantic
=
sample
[
'semantic'
]
semantic
=
cv2
.
resize
(
semantic
.
astype
(
'float32'
),
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
self
.
interp
)
semantic
=
np
.
asarray
(
semantic
).
astype
(
'int32'
)
semantic
=
np
.
expand_dims
(
semantic
,
0
)
sample
[
'semantic'
]
=
semantic
# apply gt_segm
if
'gt_segm'
in
sample
and
len
(
sample
[
'gt_segm'
])
>
0
:
masks
=
[
cv2
.
resize
(
gt_segm
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
cv2
.
INTER_NEAREST
)
for
gt_segm
in
sample
[
'gt_segm'
]
]
sample
[
'gt_segm'
]
=
np
.
asarray
(
masks
).
astype
(
np
.
uint8
)
return
sample
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录