Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
e44a25b1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e44a25b1
编写于
3月 25, 2019
作者:
X
Xin Pan
提交者:
GitHub
3月 25, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16402 from phlrain/pick_optimizer_name
Merge pull request #16380 from phlrain/add_var_name_in_opt_2
上级
42dfb56c
c02474d9
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
23 addition
and
2 deletion
+23
-2
paddle/fluid/API.spec
paddle/fluid/API.spec
+11
-0
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+11
-1
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+1
-1
未找到文件。
paddle/fluid/API.spec
浏览文件 @
e44a25b1
...
@@ -422,48 +422,59 @@ paddle.fluid.nets.img_conv_group ArgSpec(args=['input', 'conv_num_filter', 'pool
...
@@ -422,48 +422,59 @@ paddle.fluid.nets.img_conv_group ArgSpec(args=['input', 'conv_num_filter', 'pool
paddle.fluid.optimizer.SGDOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'regularization', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.optimizer.SGDOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'regularization', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.optimizer.SGDOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.SGDOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.SGDOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.SGDOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.SGDOptimizer.get_opti_var_name_list ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.SGDOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.SGDOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.MomentumOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'momentum', 'use_nesterov', 'regularization', 'name'], varargs=None, keywords=None, defaults=(False, None, None))
paddle.fluid.optimizer.MomentumOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'momentum', 'use_nesterov', 'regularization', 'name'], varargs=None, keywords=None, defaults=(False, None, None))
paddle.fluid.optimizer.MomentumOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.MomentumOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.MomentumOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.MomentumOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.MomentumOptimizer.get_opti_var_name_list ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.MomentumOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.MomentumOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdagradOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon', 'regularization', 'name'], varargs=None, keywords=None, defaults=(1e-06, None, None))
paddle.fluid.optimizer.AdagradOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon', 'regularization', 'name'], varargs=None, keywords=None, defaults=(1e-06, None, None))
paddle.fluid.optimizer.AdagradOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.AdagradOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.AdagradOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.AdagradOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.AdagradOptimizer.get_opti_var_name_list ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.AdagradOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdagradOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdamOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'beta1', 'beta2', 'epsilon', 'regularization', 'name', 'lazy_mode'], varargs=None, keywords=None, defaults=(0.001, 0.9, 0.999, 1e-08, None, None, False))
paddle.fluid.optimizer.AdamOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'beta1', 'beta2', 'epsilon', 'regularization', 'name', 'lazy_mode'], varargs=None, keywords=None, defaults=(0.001, 0.9, 0.999, 1e-08, None, None, False))
paddle.fluid.optimizer.AdamOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.AdamOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.AdamOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.AdamOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.AdamOptimizer.get_opti_var_name_list ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.AdamOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdamOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdamaxOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'beta1', 'beta2', 'epsilon', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.001, 0.9, 0.999, 1e-08, None, None))
paddle.fluid.optimizer.AdamaxOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'beta1', 'beta2', 'epsilon', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.001, 0.9, 0.999, 1e-08, None, None))
paddle.fluid.optimizer.AdamaxOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.AdamaxOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.AdamaxOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.AdamaxOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.AdamaxOptimizer.get_opti_var_name_list ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.AdamaxOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdamaxOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.DecayedAdagradOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'decay', 'epsilon', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.95, 1e-06, None, None))
paddle.fluid.optimizer.DecayedAdagradOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'decay', 'epsilon', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.95, 1e-06, None, None))
paddle.fluid.optimizer.DecayedAdagradOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.DecayedAdagradOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.DecayedAdagradOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.DecayedAdagradOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.DecayedAdagradOptimizer.get_opti_var_name_list ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.DecayedAdagradOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.DecayedAdagradOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.FtrlOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'l1', 'l2', 'lr_power', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.0, 0.0, -0.5, None, None))
paddle.fluid.optimizer.FtrlOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'l1', 'l2', 'lr_power', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.0, 0.0, -0.5, None, None))
paddle.fluid.optimizer.FtrlOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.FtrlOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.FtrlOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.FtrlOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.FtrlOptimizer.get_opti_var_name_list ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.FtrlOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.FtrlOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.RMSPropOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'rho', 'epsilon', 'momentum', 'centered', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.95, 1e-06, 0.0, False, None, None))
paddle.fluid.optimizer.RMSPropOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'rho', 'epsilon', 'momentum', 'centered', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.95, 1e-06, 0.0, False, None, None))
paddle.fluid.optimizer.RMSPropOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.RMSPropOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.RMSPropOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.RMSPropOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.RMSPropOptimizer.get_opti_var_name_list ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.RMSPropOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.RMSPropOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdadeltaOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon', 'rho', 'regularization', 'name'], varargs=None, keywords=None, defaults=(1e-06, 0.95, None, None))
paddle.fluid.optimizer.AdadeltaOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon', 'rho', 'regularization', 'name'], varargs=None, keywords=None, defaults=(1e-06, 0.95, None, None))
paddle.fluid.optimizer.AdadeltaOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.AdadeltaOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.AdadeltaOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.AdadeltaOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.AdadeltaOptimizer.get_opti_var_name_list ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.AdadeltaOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdadeltaOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.ModelAverage.__init__ ArgSpec(args=['self', 'average_window_rate', 'min_average_window', 'max_average_window', 'regularization', 'name'], varargs=None, keywords=None, defaults=(10000, 10000, None, None))
paddle.fluid.optimizer.ModelAverage.__init__ ArgSpec(args=['self', 'average_window_rate', 'min_average_window', 'max_average_window', 'regularization', 'name'], varargs=None, keywords=None, defaults=(10000, 10000, None, None))
paddle.fluid.optimizer.ModelAverage.apply ArgSpec(args=['self', 'executor', 'need_restore'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.optimizer.ModelAverage.apply ArgSpec(args=['self', 'executor', 'need_restore'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.optimizer.ModelAverage.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.ModelAverage.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.ModelAverage.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.ModelAverage.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.ModelAverage.get_opti_var_name_list ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.ModelAverage.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.ModelAverage.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.ModelAverage.restore ArgSpec(args=['self', 'executor'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.ModelAverage.restore ArgSpec(args=['self', 'executor'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.LarsMomentumOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'momentum', 'lars_coeff', 'lars_weight_decay', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.001, 0.0005, None, None))
paddle.fluid.optimizer.LarsMomentumOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'momentum', 'lars_coeff', 'lars_weight_decay', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.001, 0.0005, None, None))
paddle.fluid.optimizer.LarsMomentumOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.LarsMomentumOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.LarsMomentumOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.LarsMomentumOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.LarsMomentumOptimizer.get_opti_var_name_list ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.LarsMomentumOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.LarsMomentumOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.backward.append_backward ArgSpec(args=['loss', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.backward.append_backward ArgSpec(args=['loss', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.regularizer.L1DecayRegularizer.__init__ ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,))
paddle.fluid.regularizer.L1DecayRegularizer.__init__ ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,))
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
e44a25b1
...
@@ -71,6 +71,11 @@ class Optimizer(object):
...
@@ -71,6 +71,11 @@ class Optimizer(object):
self
.
_accumulators
=
defaultdict
(
lambda
:
dict
())
self
.
_accumulators
=
defaultdict
(
lambda
:
dict
())
self
.
helper
=
None
self
.
helper
=
None
self
.
_opti_name_list
=
[]
def
get_opti_var_name_list
(
self
):
return
self
.
_opti_name_list
def
_create_global_learning_rate
(
self
):
def
_create_global_learning_rate
(
self
):
lr
=
self
.
_global_learning_rate
()
lr
=
self
.
_global_learning_rate
()
...
@@ -166,8 +171,13 @@ class Optimizer(object):
...
@@ -166,8 +171,13 @@ class Optimizer(object):
if
shape
==
None
:
if
shape
==
None
:
shape
=
param
.
shape
shape
=
param
.
shape
assert
isinstance
(
self
.
helper
,
LayerHelper
)
assert
isinstance
(
self
.
helper
,
LayerHelper
)
var_name
=
param
.
name
+
"_"
+
name
var_name
=
unique_name
.
generate
(
var_name
)
self
.
_opti_name_list
.
append
(
var_name
)
var
=
self
.
helper
.
create_global_variable
(
var
=
self
.
helper
.
create_global_variable
(
name
=
unique_name
.
generate
(
name
)
,
name
=
var_name
,
persistable
=
True
,
persistable
=
True
,
dtype
=
dtype
or
param
.
dtype
,
dtype
=
dtype
or
param
.
dtype
,
type
=
param
.
type
,
type
=
param
.
type
,
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
e44a25b1
...
@@ -102,7 +102,7 @@ if(WITH_DISTRIBUTE)
...
@@ -102,7 +102,7 @@ if(WITH_DISTRIBUTE)
# set_tests_properties(test_dist_transformer PROPERTIES TIMEOUT 1000)
# set_tests_properties(test_dist_transformer PROPERTIES TIMEOUT 1000)
set_tests_properties
(
test_dist_ctr test_dist_mnist test_dist_mnist_batch_merge test_dist_save_load test_dist_se_resnext test_dist_simnet_bow test_dist_text_classification test_dist_train test_dist_word2vec PROPERTIES RUN_SERIAL TRUE
)
set_tests_properties
(
test_dist_ctr test_dist_mnist test_dist_mnist_batch_merge test_dist_save_load test_dist_se_resnext test_dist_simnet_bow test_dist_text_classification test_dist_train test_dist_word2vec PROPERTIES RUN_SERIAL TRUE
)
endif
(
NOT APPLE
)
endif
(
NOT APPLE
)
py_test_modules
(
test_dist_transpiler MODULES test_dist_transpiler
)
#
py_test_modules(test_dist_transpiler MODULES test_dist_transpiler)
endif
()
endif
()
py_test_modules
(
test_parallel_executor_crf MODULES test_parallel_executor_crf SERIAL
)
py_test_modules
(
test_parallel_executor_crf MODULES test_parallel_executor_crf SERIAL
)
py_test_modules
(
test_parallel_executor_fetch_feed MODULES test_parallel_executor_fetch_feed SERIAL
)
py_test_modules
(
test_parallel_executor_fetch_feed MODULES test_parallel_executor_fetch_feed SERIAL
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录